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Abstract— Abstraction of physical hardware using 
infrastructure-as-a-service (IaaS) clouds leads to the simplistic 
view that resources are homogeneous and that infinite scaling 
is possible with linear increases in performance.  Support for 
autonomic scaling of multi-tier service oriented applications 
requires determination of when, what, and where to scale.  
“When” is addressed by hotspot detection schemes using 
techniques including performance modeling and time series 
analysis. “What” relates to determining the quantity and size 
of new resources to provision.  “Where” involves identification 
of the best location(s) to provision new resources.  In this paper 
we investigate primarily “where” new infrastructure should be 
provisioned, and secondly “what” the infrastructure should be.  
Dynamic scaling of infrastructure for service oriented 
applications requires rapid response to changes in demand to 
meet application quality-of-service requirements.  We 
investigate the performance and resource cost implications of 
VM placement when dynamically scaling server infrastructure 
of service oriented applications.  We evaluate dynamic scaling 
in the context of providing modeling-as-a-service for two 
environmental science models.      

Keywords Autonomic computing; IaaS; Virtualization; 
Multi-Tenancy; Resource Management and Performance; 

I.  INTRODUCTION 

Supporting dynamic scalability for service oriented 
applications introduces resource management challenges that 
must be addressed by Infrastructure-as-a-Service (IaaS) 
clouds.  These challenges can be broken down into three 
primary concerns:  (1) Determining WHEN infrastructure 
should be provisioned? (2) Determining WHAT 
infrastructure should be provisioned? And (3) Determining 
WHERE infrastructure should be provisioned?   

WHEN server infrastructure should scale to cope with 
demand is informed by hotspot detection [5].  Determining 
when to scale is complicated by the latency of virtual 
machine (VM) launches.  In some cases, the time required 
to provision and launch new VMs exceeds the duration of 
demand spikes!  By predicting future demand server 
infrastructure can be pre-provisioned in anticipation.  Load 
prediction can be difficult particularly for applications with 
stochastic load behavior.  Care must be exercised as poor 
predictions can result in overprovisioning and higher 
hosting costs.   

WHAT server infrastructure should be provisioned 
concerns the size (vertical scaling) and quantity (horizontal 
scaling) of new VM allocations.  Vertical scaling involves 
modifying resource allocations of existing VMs.  Altering 
VM CPU core, memory, disk, and network bandwidth 
allocations may alleviate poor performance. When vertical 
scaling is unavailable or insufficient to address demand 
horizontal scaling is often used.  New VMs are launched 
and workload of stressed application tiers is balanced across 
a pool.  The key challenge lies in determining how many 
VMs should be provisioned, and with what resource 
allocations?   

WHERE server resources should be provisioned is 
abstracted by the virtual infrastructure manager (VIM).  
Representing VMs as tuples and using them to pack physical 
machines (PMs) can be thought of as an instance of the 
multidimensional bin-packing problem that has been shown 
to be NP-hard.  Two basic VM placement schedulers 
common to private cloud VIMs which support launching 
VMs on local data centers include greedy and round-robin.  
Greedy allocation deploys all VMs to a single PM first.  
When the host’s resources are exhausted another PM is 
selected and the process is repeated.  Greedy allocation packs 
resources tightly, enabling maximum energy savings without 
regard to VM/application performance.  Round-robin 
placement distributes VMs to each PM in succession, 
balancing the VM hosting load across the cluster.  Round-
robin placement typically provides better VM performance 
by reducing resource contention at the expense of higher 
energy requirements.  Using round-robin placement, all PMs 
in the cluster receive a portion of the VM hosting load, 
eliminating potential for idle machines to operate in power 
saving modes [6].   

A. Research Contributions 

Previous research has explored alternative methods of 
VM placement to improve load balancing, server utilization, 
and energy savings [6] [7] [8] [9] [10] [11] [12].  In this 
paper we investigate the consequences of VM placement 
when dynamically scaling infrastructure for service oriented 
applications.  Specifically, we investigate the effects of VM 
placement on software services scalability.  To investigate 
implications of VM placement on scalability we developed 
the Least-Busy VM placement scheduler, a load-aware VM 
placement scheduler.  To identify available resource capacity 
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across physical hosts an aggregated resource utilization 
metric known as Busy-Metric, is introduced.  Resource 
utilization data from all VMs and their physical hosts is used 
to calculate spent resource capacity.  Busy-Metric scores are 
used by Least-Busy to provide load balanced placement of 
new VMs across PMs.  To our knowledge this is the first 
study that investigates how scalability of service oriented 
applications is impacted by IaaS cloud VM placement. 

B. Research Questions 
 

This paper investigates the following research questions: 
 

RQ-1: What performance implications result from VM 
placement location when dynamically scaling service 
oriented applications? How important is VM placement for 
scaling in response to increasing service demand?  

RQ-2: How do resource costs (# of VMs) vary when 
dynamically scaling service oriented applications as a result 
of VM placement location? 

II. BACKGROUND AND RELATED WORK 
 

Amazon’s public cloud implements the Elastic Compute 
Cloud (EC2) application programming interface (API) 
enabling programmatic control of resource elasticity.  The 
EC2 API is supported by many open source cloud VIMs.  
Service-oriented applications harness the EC2 API to enable 
scalability using private and/or public cloud resources.  
Private clouds provide the base infrastructure while demand 
bursts are serviced with public cloud resources (hybrid 
cloud).  Private cloud VIMs providing an implementation of 
the EC2 API include: Apache CloudStack [1], Eucalyptus 
[2], OpenNebula [3], and OpenStack [4].   

All private cloud VIMs provide similar mechanisms for 
provisioning VMs on demand.  Eucalyptus supports both 
greedy and round robin VM placement schemes [2].  VM 
deployment can be localized to specific clusters or subnets 
using EC2 security groups and availability zones.  Apache 
CloudStack provides “fill first” VM placement, equivalent to 
greedy allocation, and “disperse” mode, equivalent to round-
robin [1].  Additionally custom allocators support 
implementation of new VM scheduling schemes.  OpenStack 
provides two primary VM schedulers known as fill-first and 
spread-first.  Fill-first, equivalent to greedy placement, packs 
VMs tightly onto PMs.  Spread-first distributes VMs across 
PMs in round-robin fashion, but schedules VMs on PMs 
having the highest number of available CPU cores and 
memory first.  OpenStack supports filters which enable VMs 
to be co-located or separated as desired to achieve 
advantageous deployments for applications.  OpenNebula 
provides both a “packing” policy, equivalent to greedy 
placement, and a “striping” policy equivalent to round-robin 
[3] [13].  Additionally custom “rank” expressions are 
supported which calculate hosting preference scores for each 
PM.  When a VM launch request is received, the PM with 
the highest score is delegated as host.  Scores are 
recalculated for each VM launch request.  Eight system 
variables can be used in custom rank expressions, none of 
which are resource utilization statistics.  Supported variables 

include: hostname, total CPUs, free CPUs, used CPUs, total 
memory, free memory, used memory, and hypervisor type.   

Of the VM schedulers offered by cloud infrastructure 
managers none consider the load characteristics of the VM 
hosts.  Only capacity parameters such as # of CPUs, 
available memory and disk space are considered to ensure 
VM allocations have sufficient resources to run.  To better 
support dynamic scaling of service-oriented application 
infrastructure, VM schedulers should consider resource 
utilization across physical resources to improve application 
performance and cluster load balancing. 

 

Previous research on dynamic scaling in the cloud has 
investigated WHEN to scale including work on autonomic 
control approaches and hotspot detection schemes [7] [14] 
[15] [16] [17].  These and other efforts additionally focus on 
WHAT to scale in terms of vertical and horizontal scaling 
[18] [19].  Investigations on WHERE to scale related to VM 
scheduling have largely focused on task/service placement 
[20] [21] or supporting VM live migration for load balancing 
[7] [11] [12] or energy savings via VM consolidation across 
physical hosts [7] [8] [9] [10] [12].   

III. DYNAMIC APPLICATION SCALING 

A. VM-Scaler 

To investigate implications of VM placement for 
dynamic scaling we developed VM-Scaler, a REST/JSON-
based web services application.  VM-Scaler harnesses the 
Amazon EC2 API to support application scaling and cloud 
management and currently supports Amazon’s public elastic 
compute cloud (EC2), and Eucalyptus versions 3.1 and 3.3.  
VM-Scaler provides cloud control while abstracting the 
underlying IaaS cloud and is extensible to any EC2 
compatible VIM.  VM-Scaler provides a platform for 
conducting IaaS cloud research by supporting 
experimentation with hotspot detection schemes, VM 
management/placement, and job scheduling/ proxy services. 

Upon initialization VM-Scaler probes the host cloud and 
collects metadata including location and state information for 
all PMs and VMs.  An agent installed on all VMs/PMs sends 
resource utilization statistics to VM-Scaler at fixed intervals.  
Collected resource utilization statistics are described in 
[22][23]. This extends our previous work investigating the 
use of resource utilization statistics for guiding cloud 
application deployment. 

VM-Scaler supports horizontal scaling of application 
infrastructure by provisioning VMs when application 
hotspots are detected.  One or more VMs can be launched in 
parallel in response to application demand. To initiate 
scaling, a service request is sent to VM-Scaler to begin 
monitoring a specific application tier.  VM-Scaler monitors 
the tier and launches additional VMs when hotspots are 
detected.  VM-Scaler handles launch failures, automatically 
reconfigures the proxy server, and provides application 
specific configuration before adding new VMs to a tier’s 
working set. Tier-based scaling in VM-Scaler is conceptually 
similar to Amazon auto-scaling groups [24]. 

Three configurable timing parameters are provided to 
support autonomic scaling: min_time_to_scale_again, 
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min_time_to_scale_after_failure, and max_VM_ 
launch_time.  Min_time_to_scale_again provides a time 
buffer before scaling again, allowing time to consider the 
impact of recent resource additions.  This parameter helps to 
eliminate the ping-pong effect described in [25] and is 
equivalent to Amazon Scaling Group cool-down periods 
[24].  Max_VM_launch_time provides a maximum time limit 
before terminating launches that appear to have stalled.  This 
supports handling launch failures by reissuing stalled launch 
requests.  Min_time_to_scale_after_failure provides an 
alternate wait time when VM launch failures occur.   

 

B. Busy-Metric 

The Busy-Metric ranks resource utilization of the 
physical host machines by calculating total CPU time, disk 
sector reads/writes, network bytes sent/received for all VMs 
and PMs.  Each component is normalized to 1 by dividing by 
observed approximate maximums for each resource 
utilization statistic.  CPU time is double weighted to assign 
more importance to free CPU capacity.   

A VM capacity parameter is included to prevent too 
many VMs from being allocated to a single host.  Busy-
metric scores of the physical host increase linearly for each 
additional VM hosted at a rate described using equation 3.  
The rate increases faster for hosts with fewer CPU cores.  
Incorporating this parameter enables Busy-metric to favor 
hosts having the fewest guest VMs.  When PMs host fewer 
guests the degree of hypervisor level context switching 
required to multiplex resources is reduced.  This practice 
should help reduce virtualization overhead.   

Agents installed on all VMs and PMs are configured to 
send VM-Scaler resource utilization data every 15 seconds.  
One second averages using the last minute of data samples 
were used to calculate the Busy-Metric.  Observed values for 
each parameter are divided by approximate one second 
maximum capacities of the physical hardware determined 
through testing.   

 

For example: 
݁݉݅ݐݑܿ ൌ

௨௧್ೞ_భೞ

௨௧ౣ౮ _భೞ
                             (1) 

 
 

Our Busy-Metric is expressed as: 

ሺଶ·௨௧ሻା ௗ௦ାௗ௦௪ାା௦ାሺ
మ·ಹೞ_ೇಾೞ 

ುಾೝೞ
ሻ


             (2) 

 

Each additional VM hosted linearly increases the value of 
the Busy-Metric by: 
 

݁ሺ୪୬  ெೝೞ ି ଵ.ଶହଶ଼ሻ                                                 (3) 
 

 

The Busy-Metric provides an approach to rank available 
capacity of physical host machines.  Our goal has been to 
develop a general metric to support VM scheduling based 
on the total shared load on PMs.  CPU time is double 
weighted because our environmental science models are 
primarily CPU bound applications.  Many busy metric 
variations are possible.  Our goal has not been to 

develop the perfect metric, but to investigate 
implications of VM placement for dynamic scaling.  

IV. EXPERIMENTAL INVESTIGATION 

A. Experimental Setup 

To investigate research questions presented in section 1 
we test dynamic scaling for two environmental models: the 
Revised Universal Soil Loss Equation – Version 2 
(RUSLE2) [26], and the Wind Erosion Prediction System 
(WEPS) [27].  RUSLE2 and WEPS are the US Department 
of Agriculture–Natural Resource Conservation Service 
standard models for soil erosion used by over 3,000 county 
level field offices across the United States.  RUSLE2 and 
WEPS are used to provide soil erosion modeling services to 
end users.  RUSLE2 was developed primarily to guide 
natural resources conservation planning, inventory erosion 
rates, and estimate sediment delivery.  The Wind Erosion 
Prediction System (WEPS) is a daily simulation model 
which outputs average soil loss and deposition values for 
selected areas and periods of time to predict soil erosion due 
to wind.  

RUSLE2 was originally developed as a Windows-based 
Microsoft Visual C++ desktop application.  RUSLE2 is 
deployed as a REST/JSON based web service hosted by 
Apache Tomcat [28].  WEPS was originally developed as a 
desktop Windows application using Fortran95 and Java.  
WEPS has been ported to Linux to operate as a REST/JSON 
based web service.  Both applications are deployed as part of 
the USDA’s Cloud Services Innovation Platform [29]. 

TABLE I.  RUSLE2/WEPS APPLICATION COMPONENTS 

Component RUSLE2 WEPS 

M Model 
Apache Tomcat 6.0.20, 
Wine 1.0.1, RUSLE2, 
OMS3 [31] [32] 

Apache Tomcat 6.0.20, 
WEPS 

D Database 

Postgresql-8.4, PostGIS 
1.4, soils data (1.7 
million shapes), 
management data (98k 
shapes), climate data 
(31k shapes),  
4.6 GB total for 
Tennessee 

Postgresql-8.4, PostGIS 
1.4, soils data (4.3 
million shapes), 
climate/wind data (850 
shapes), 17GB total, 
western US data. 

F File server 

nginx 0.7.62 file server, 
57k XML files (305MB), 
parameterizes RUSLE2 
model runs.  

nginx 0.7.62 file server, 
291k files (1.4 GB), 
parameterizes WEPS 
model runs.   

L Logger 
Codebeamer 5.5, 
Apache Tomcat (32-bit), 
Ia-32libs  

Redis 2.2.12  
distributed cache server 

 
 

RUSLE2 and WEPS provide good candidates to 
prototype service oriented application scaling. Their 
architecture consisting of a web application server, 
geospatial relational database, file server, and logging server 
is analogous to many service oriented applications. 
Components of the models are described in Table I.  A PM 
ran the HAProxy load balancer to redirect modeling requests 
to the active pool of M VMs.  HAProxy is a high 
performance load balancer that supports proxying TCP and 
HTTP socket-based network traffic [30].   
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B. Hardware Configuration 

We conducted scaling tests using a Eucalyptus 3.1.2 IaaS 
private cloud deployed across nine SUN X6270 blade 
servers interconnected by a Giga-bit VLAN.  Each blade 
server had dual Intel Xeon X5560-quad core 2.8 GHz CPUs, 
24GB ram, and dual 15000rpm HDDs.  The host operating 
system was Ubuntu 12.04 Linux (3.2.0-29) 64-bit server.  
The XEN hypervisor version 4.1.2 provided VMs in 
paravirtual mode.  VM guests ran Ubuntu Linux 9.10 
(2.6.31) 64-bit server.  Six blade servers were used as 
Eucalyptus node-controllers to host VMs, one blade server 
hosted the Eucalyptus cloud-controller, cluster-controller, 
walrus server, and storage-controller services.  Eucalyptus 
managed mode networking was used to support network 
isolation of VMs using private VLANs.  A separate blade 
server was used to generate the modeling work load. Another 
blade server acted as a client for file transfers to create 
background network activity for shared load testing. 

Random test generation was used to generate 10,000 
unique RUSLE2 and 1,000 WEPS test cases.  RUSLE2 tests 
used geospatial data from the state of Tennessee.  WEPS 
tests used data primarily from Kansas and Colorado where 
soil erosion due to wind is a large environmental concern.  
For scaling tests, individual WEPS model runs were 
terminated after 10 minutes.  This was necessary because 
some randomly generated WEPS runs required more than 30 
minutes to execute.   

C. Test Configurations 
 

To simulate shared cluster load present in a public cloud 
we generated artificial load on the six PMs which hosted 
VMs.  Table II describes our shared cluster load and the 
corresponding PM Busy-Metric scores prior to executing any 
tests.  Our goal was to simulate potential public cloud load 
conditions where users compete for server resources.  
Custom scripts generated load activity.  CPU load was 
created for a specified number of cores by performing 
continuous math computations.  Disk load was created by 
continuously reading, writing, or copying a text file.  To 
force the system to continuously reread the file, cache 
clearing as described previously was performed.  To create 
network load a VM image file was constantly transferred 
to/from a non-cloud blade server.  Sftp’s “-l” flag was used 
to control the transfer bandwidth.   

TABLE II.  SHARED CLUSTER LOAD  

Cloud Node R2 WEPS CPU Disk Network
Busy-
Metric 

PM-1  M D 2 cores@25%   .083 
PM-2  D L L 4 cores@25%  ↑ @20% .285 
PM-3  F  6 cores@25%   .240 
PM-4  M F 5 cores@25%  ↓ @20% .240 
PM-5   2 cores@25%   .082 
PM-6   4 cores@25%   .156 

 
Table III describes VM size, modeling request rates, and 

request rate increments for our scaling tests.  An exponential 
distribution based random sleep function spaced individual 
model requests to simulate a Poisson distribution.  This 

enabled requests to occur at random intervals while still 
achieving the desired constant request rate.   

 

TABLE III.  VM SCALING TESTS 

VM size
Mem(MB)/ 
Disk(GB) 

Rusle2 
Req Rate 

WEPS 
Req Rate 

Increment
RUSLE2

Increment
WEPS 

2-core 1024 / 3 .5-16/sec  .1-1/sec .25/15s .025/15s 

4-core 2048 / 3 1-16/sec .1-1/sec .5/30s .05/30s 

8-core 4096 / 3 2-16/sec .1-1/sec 1/min .1/min 
 

Scaling thresholds for hotspot detection were increased 
linearly for 2-core, 4-core, and 8-core VM tests.  The intent 
was to use identical scaling thresholds relative to the number 
of VM CPU cores.  Figure 1 provides a quartile plot of 
RUSLE2 vs. WEPS execution times.  WEPS model runs 
consume nearly 100% of a CPU core for their duration 
averaging from 80-100 seconds compared to a few seconds 
for RUSLE2 runs.  For RUSLE2 hotspot detection was 
performed by monitoring resource utilization of the initial 
worker VM as individual model execution times were short 
(2s average) and homogenous.  Load was evenly balanced 
across worker VMs using HAproxy round-robin load 
balancing.  This approach was insufficient for WEPS, as 
model runs had twice the variance and were much longer in 
duration.  For WEPS hotspot detection we calculated average 
CPU time, CPU idle time, and # of context switches for the 
entire pool of worker VMs and launched additional worker 
VMs when averages exceeded the scaling thresholds.  

 

 
Figure 1.  RUSLE2 vs. WEPS Model Execution Time Quartile Box Plot 

TABLE IV.  DYNAMIC SCALING TESTS 

VM size Rusle 2 WEPS 

2-core VMs 20 scale tests 20 scale tests 

4-core VMs 20 scale tests 20 scale tests 

8-core VMs 20 scale tests 20 scale tests 

V. EXPERIMENTAL RESULTS 

Table IV summarizes RUSLE2 and WEPS scaling tests 
completed to support investigation of our research questions 
presented in section 1.  Scaling tests were conducted twice, 
once using Least-Busy VM placement and again using 
round-robin VM placement. 60 test sets of 6500+ Rusle2 
model runs, and 60 test sets of 300 WEPS model runs were 
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conducted for a total of over 800,000 model runs.  For 2-
core VM WEPS testing, sequential VM launches were 
insufficient to achieve good results.  To add resources more 
rapidly three 2-core VMs were launched in parallel.   

TABLE V.  SCALING TEST RESULTS 

VM size Rusle 2 WEPS 

2-core 
VMs 

lb<rr 
p=.014 
df=18.2 

lb<rr 
p=.162 
n.s. 1 

4-core 
VMs 

lb<rr 
p= 0.065 
df = 22.7 

lb<rr 
p= .035 

df = 24.65 

8-core 
VMs 

lb<rr 
p=.017 
df=24.5 

lb<rr 
p=.00003 
df=33.796 

1 (3) 2-core VMs launched per scaling event  
 

Table V shows the statistical significance from t-tests 
indicating if performance means for scaling performance 
with Least-Busy were different from round-robin.  
Normalized performance improvements of Least-Busy VM 
placement relative to round-robin are shown in figure 2.  
Across all tests, RUSLE2 performance improved by 16% on 
average using Least-Busy VM placement, while WEPS 
performance improved 12%.  Least-Busy exhibited its 
fastest differential performance for Rusle2 with 2-core tests 
(29.3% faster, 3.2 hrs cputime savings/scaling test), and 
WEPS for 8-core tests (19.1% faster, 1.6 hrs cputime 
savings/scaling test).  Least-Busy VM placement enabled 
better model performance for all tests.   

 

 
Figure 2.  Least-Busy VM Placement                                                    

Application Performance Improvement (normalized) 

Figure 3 shows the normalized resource cost savings in 
percentage of VM allocations.  Least-Busy VM placement 
supported execution of the modeling workload with fewer 
resources.  RUSLE2 required on average 3.2% fewer VMs 
and WEPS 2.2%.  The most economical deployment used 2-
core VMs for RUSLE2 (28.92 total cores avg) and 4-core 
VMs for WEPS (30.56 total cores avg).  Least-Busy VM 
placement enabled hosting the same modeling workload 
with fewer VMs and total CPU cores.  Less physical server 

capacity was required for hosting while faster modeling 
performance was achieved.   

 

 

Figure 3.  Least-Busy VM Placement                                              
Resource Cost Savings (% of VMs- normalized) 

Average VM launch times are shown in figure 4.  
Overall stress from hosting the WEPS workload was higher 
than RUSLE2 resulting in ~10% slower average VM launch 
times. For all tests Least-Busy VM launch times were faster 
except for 2-core WEPS tests. For these tests, three VMs 
were launched in parallel producing this performance 
degradation. 

 

 
Figure 4.  VM Launch Times (seconds):                                                       

Least-Busy and Round-Robin VM Placement 

Hosting our modeling workload using VMs with fewer 
cores provided a greater challenge as more VMs had to be 
rapidly launched adding to system stress.  For WEPS 2-core 
tests launching VMs in parallel increased overhead and 
degraded performance illustrating tradeoffs between cluster 
size, launch overhead, and application performance. For 2-
core tests, nearly continuous sequential VM launches were 
required for RUSLE2 to cope with demand. WEPS model 
execution times nearly doubled with 20% of runs timing out 
after 10 minutes. Parallel VM launches helped our WEPS 2-
core VM configuration achieve performance similar to 4-
core configurations. 
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VI. CONCLUSIONS 

Dynamic scaling performance of service oriented 
applications hosted using IaaS clouds depends on carefully 
distributing new VMs across physical hosts.  Comparing our 
Least-Busy VM placement approach versus round-robin we 
observed performance improvements up to 29% (RUSLE2) 
and 19% (WEPS) with average improvements of 16% and 
12% respectively. Dynamically scaling our service oriented 
applications with Least-Busy VM placement required 2-3% 
fewer VMs while achieving these observed performance 
improvements! 

Abstraction of physical hardware using IaaS clouds leads 
to the simplistic view that resources are homogenous and 
scaling can infinitely provide linear increases in 
performance.  Our results demonstrate that decisions 
regarding VM placement location have important 
performance and resource cost implications.  Ad-hoc VM 
placement schemes appear inefficient at managing server 
infrastructure while providing resources for dynamic scaling.  
Our results demonstrate how private clouds can deliver 
potential performance and resource cost savings by 
addressing resource management inefficiencies.   
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