
University of Washington Tacoma
UW Tacoma Digital Commons

School of Engineering and Technology Publications School of Engineering and Technology

3-1-2014

Dynamic Scaling for Service Oriented
Applications: Implications of Virtual Machine
Placement on IaaS Clouds
Wes Lloyd
University of Washington Tacoma, wlloyd@uw.edu

Shrideep Pallickara

Olaf David

Mazdak Arabi

Ken Rojas

Follow this and additional works at: https://digitalcommons.tacoma.uw.edu/tech_pub

This Conference Proceeding is brought to you for free and open access by the School of Engineering and Technology at UW Tacoma Digital
Commons. It has been accepted for inclusion in School of Engineering and Technology Publications by an authorized administrator of UW Tacoma
Digital Commons.

Recommended Citation
Lloyd, Wes; Pallickara, Shrideep; David, Olaf; Arabi, Mazdak; and Rojas, Ken, "Dynamic Scaling for Service Oriented Applications:
Implications of Virtual Machine Placement on IaaS Clouds" (2014). School of Engineering and Technology Publications. 15.
https://digitalcommons.tacoma.uw.edu/tech_pub/15

https://digitalcommons.tacoma.uw.edu?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/tech_pub?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/institute_tech?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/tech_pub?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/tech_pub/15?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages

1

Dynamic Scaling for Service Oriented Applications:
Implications of Virtual Machine Placement on IaaS Clouds

Wes Lloyd1,2, Shrideep Pallickara1, Olaf David1,2,
Mazdak Arabi2

1Department of Computer Science
2Department of Civil and Environmental Engineering

Colorado State University, Fort Collins, USA
wes.lloyd, shrideep.pallickara, olaf.david,

mazdak.arabi@colostate.edu

Ken Rojas
USDA-Natural Resource Conservation Service

Fort Collins, Colorado USA
Ken.Rojas@ftc.usda.gov

Abstract— Abstraction of physical hardware using
infrastructure-as-a-service (IaaS) clouds leads to the simplistic
view that resources are homogeneous and that infinite scaling
is possible with linear increases in performance. Support for
autonomic scaling of multi-tier service oriented applications
requires determination of when, what, and where to scale.
“When” is addressed by hotspot detection schemes using
techniques including performance modeling and time series
analysis. “What” relates to determining the quantity and size
of new resources to provision. “Where” involves identification
of the best location(s) to provision new resources. In this paper
we investigate primarily “where” new infrastructure should be
provisioned, and secondly “what” the infrastructure should be.
Dynamic scaling of infrastructure for service oriented
applications requires rapid response to changes in demand to
meet application quality-of-service requirements. We
investigate the performance and resource cost implications of
VM placement when dynamically scaling server infrastructure
of service oriented applications. We evaluate dynamic scaling
in the context of providing modeling-as-a-service for two
environmental science models.

Keywords Autonomic computing; IaaS; Virtualization;
Multi-Tenancy; Resource Management and Performance;

I. INTRODUCTION

Supporting dynamic scalability for service oriented
applications introduces resource management challenges that
must be addressed by Infrastructure-as-a-Service (IaaS)
clouds. These challenges can be broken down into three
primary concerns: (1) Determining WHEN infrastructure
should be provisioned? (2) Determining WHAT
infrastructure should be provisioned? And (3) Determining
WHERE infrastructure should be provisioned?

WHEN server infrastructure should scale to cope with
demand is informed by hotspot detection [5]. Determining
when to scale is complicated by the latency of virtual
machine (VM) launches. In some cases, the time required
to provision and launch new VMs exceeds the duration of
demand spikes! By predicting future demand server
infrastructure can be pre-provisioned in anticipation. Load
prediction can be difficult particularly for applications with
stochastic load behavior. Care must be exercised as poor
predictions can result in overprovisioning and higher
hosting costs.

WHAT server infrastructure should be provisioned
concerns the size (vertical scaling) and quantity (horizontal
scaling) of new VM allocations. Vertical scaling involves
modifying resource allocations of existing VMs. Altering
VM CPU core, memory, disk, and network bandwidth
allocations may alleviate poor performance. When vertical
scaling is unavailable or insufficient to address demand
horizontal scaling is often used. New VMs are launched
and workload of stressed application tiers is balanced across
a pool. The key challenge lies in determining how many
VMs should be provisioned, and with what resource
allocations?

WHERE server resources should be provisioned is
abstracted by the virtual infrastructure manager (VIM).
Representing VMs as tuples and using them to pack physical
machines (PMs) can be thought of as an instance of the
multidimensional bin-packing problem that has been shown
to be NP-hard. Two basic VM placement schedulers
common to private cloud VIMs which support launching
VMs on local data centers include greedy and round-robin.
Greedy allocation deploys all VMs to a single PM first.
When the host’s resources are exhausted another PM is
selected and the process is repeated. Greedy allocation packs
resources tightly, enabling maximum energy savings without
regard to VM/application performance. Round-robin
placement distributes VMs to each PM in succession,
balancing the VM hosting load across the cluster. Round-
robin placement typically provides better VM performance
by reducing resource contention at the expense of higher
energy requirements. Using round-robin placement, all PMs
in the cluster receive a portion of the VM hosting load,
eliminating potential for idle machines to operate in power
saving modes [6].

A. Research Contributions

Previous research has explored alternative methods of
VM placement to improve load balancing, server utilization,
and energy savings [6] [7] [8] [9] [10] [11] [12]. In this
paper we investigate the consequences of VM placement
when dynamically scaling infrastructure for service oriented
applications. Specifically, we investigate the effects of VM
placement on software services scalability. To investigate
implications of VM placement on scalability we developed
the Least-Busy VM placement scheduler, a load-aware VM
placement scheduler. To identify available resource capacity

2

across physical hosts an aggregated resource utilization
metric known as Busy-Metric, is introduced. Resource
utilization data from all VMs and their physical hosts is used
to calculate spent resource capacity. Busy-Metric scores are
used by Least-Busy to provide load balanced placement of
new VMs across PMs. To our knowledge this is the first
study that investigates how scalability of service oriented
applications is impacted by IaaS cloud VM placement.

B. Research Questions

This paper investigates the following research questions:

RQ-1: What performance implications result from VM
placement location when dynamically scaling service
oriented applications? How important is VM placement for
scaling in response to increasing service demand?

RQ-2: How do resource costs (# of VMs) vary when
dynamically scaling service oriented applications as a result
of VM placement location?

II. BACKGROUND AND RELATED WORK

Amazon’s public cloud implements the Elastic Compute
Cloud (EC2) application programming interface (API)
enabling programmatic control of resource elasticity. The
EC2 API is supported by many open source cloud VIMs.
Service-oriented applications harness the EC2 API to enable
scalability using private and/or public cloud resources.
Private clouds provide the base infrastructure while demand
bursts are serviced with public cloud resources (hybrid
cloud). Private cloud VIMs providing an implementation of
the EC2 API include: Apache CloudStack [1], Eucalyptus
[2], OpenNebula [3], and OpenStack [4].

All private cloud VIMs provide similar mechanisms for
provisioning VMs on demand. Eucalyptus supports both
greedy and round robin VM placement schemes [2]. VM
deployment can be localized to specific clusters or subnets
using EC2 security groups and availability zones. Apache
CloudStack provides “fill first” VM placement, equivalent to
greedy allocation, and “disperse” mode, equivalent to round-
robin [1]. Additionally custom allocators support
implementation of new VM scheduling schemes. OpenStack
provides two primary VM schedulers known as fill-first and
spread-first. Fill-first, equivalent to greedy placement, packs
VMs tightly onto PMs. Spread-first distributes VMs across
PMs in round-robin fashion, but schedules VMs on PMs
having the highest number of available CPU cores and
memory first. OpenStack supports filters which enable VMs
to be co-located or separated as desired to achieve
advantageous deployments for applications. OpenNebula
provides both a “packing” policy, equivalent to greedy
placement, and a “striping” policy equivalent to round-robin
[3] [13]. Additionally custom “rank” expressions are
supported which calculate hosting preference scores for each
PM. When a VM launch request is received, the PM with
the highest score is delegated as host. Scores are
recalculated for each VM launch request. Eight system
variables can be used in custom rank expressions, none of
which are resource utilization statistics. Supported variables

include: hostname, total CPUs, free CPUs, used CPUs, total
memory, free memory, used memory, and hypervisor type.

Of the VM schedulers offered by cloud infrastructure
managers none consider the load characteristics of the VM
hosts. Only capacity parameters such as # of CPUs,
available memory and disk space are considered to ensure
VM allocations have sufficient resources to run. To better
support dynamic scaling of service-oriented application
infrastructure, VM schedulers should consider resource
utilization across physical resources to improve application
performance and cluster load balancing.

Previous research on dynamic scaling in the cloud has
investigated WHEN to scale including work on autonomic
control approaches and hotspot detection schemes [7] [14]
[15] [16] [17]. These and other efforts additionally focus on
WHAT to scale in terms of vertical and horizontal scaling
[18] [19]. Investigations on WHERE to scale related to VM
scheduling have largely focused on task/service placement
[20] [21] or supporting VM live migration for load balancing
[7] [11] [12] or energy savings via VM consolidation across
physical hosts [7] [8] [9] [10] [12].

III. DYNAMIC APPLICATION SCALING

A. VM-Scaler

To investigate implications of VM placement for
dynamic scaling we developed VM-Scaler, a REST/JSON-
based web services application. VM-Scaler harnesses the
Amazon EC2 API to support application scaling and cloud
management and currently supports Amazon’s public elastic
compute cloud (EC2), and Eucalyptus versions 3.1 and 3.3.
VM-Scaler provides cloud control while abstracting the
underlying IaaS cloud and is extensible to any EC2
compatible VIM. VM-Scaler provides a platform for
conducting IaaS cloud research by supporting
experimentation with hotspot detection schemes, VM
management/placement, and job scheduling/ proxy services.

Upon initialization VM-Scaler probes the host cloud and
collects metadata including location and state information for
all PMs and VMs. An agent installed on all VMs/PMs sends
resource utilization statistics to VM-Scaler at fixed intervals.
Collected resource utilization statistics are described in
[22][23]. This extends our previous work investigating the
use of resource utilization statistics for guiding cloud
application deployment.

VM-Scaler supports horizontal scaling of application
infrastructure by provisioning VMs when application
hotspots are detected. One or more VMs can be launched in
parallel in response to application demand. To initiate
scaling, a service request is sent to VM-Scaler to begin
monitoring a specific application tier. VM-Scaler monitors
the tier and launches additional VMs when hotspots are
detected. VM-Scaler handles launch failures, automatically
reconfigures the proxy server, and provides application
specific configuration before adding new VMs to a tier’s
working set. Tier-based scaling in VM-Scaler is conceptually
similar to Amazon auto-scaling groups [24].

Three configurable timing parameters are provided to
support autonomic scaling: min_time_to_scale_again,

3

min_time_to_scale_after_failure, and max_VM_
launch_time. Min_time_to_scale_again provides a time
buffer before scaling again, allowing time to consider the
impact of recent resource additions. This parameter helps to
eliminate the ping-pong effect described in [25] and is
equivalent to Amazon Scaling Group cool-down periods
[24]. Max_VM_launch_time provides a maximum time limit
before terminating launches that appear to have stalled. This
supports handling launch failures by reissuing stalled launch
requests. Min_time_to_scale_after_failure provides an
alternate wait time when VM launch failures occur.

B. Busy-Metric

The Busy-Metric ranks resource utilization of the
physical host machines by calculating total CPU time, disk
sector reads/writes, network bytes sent/received for all VMs
and PMs. Each component is normalized to 1 by dividing by
observed approximate maximums for each resource
utilization statistic. CPU time is double weighted to assign
more importance to free CPU capacity.

A VM capacity parameter is included to prevent too
many VMs from being allocated to a single host. Busy-
metric scores of the physical host increase linearly for each
additional VM hosted at a rate described using equation 3.
The rate increases faster for hosts with fewer CPU cores.
Incorporating this parameter enables Busy-metric to favor
hosts having the fewest guest VMs. When PMs host fewer
guests the degree of hypervisor level context switching
required to multiplex resources is reduced. This practice
should help reduce virtualization overhead.

Agents installed on all VMs and PMs are configured to
send VM-Scaler resource utilization data every 15 seconds.
One second averages using the last minute of data samples
were used to calculate the Busy-Metric. Observed values for
each parameter are divided by approximate one second
maximum capacities of the physical hardware determined
through testing.

For example:
݁݉݅ݐݑܿ ൌ

௨௧್ೞ_భೞ

௨௧ౣ౮ _భೞ
 (1)

Our Busy-Metric is expressed as:

ሺଶ·௨௧ሻା ௗ௦ାௗ௦௪ାା௦ାሺ
మ·ಹೞ_ೇಾೞ

ುಾೝೞ
ሻ

 (2)

Each additional VM hosted linearly increases the value of
the Busy-Metric by:

݁ሺ୪୬ ெೝೞ ି ଵ.ଶହଶ଼ሻ (3)

The Busy-Metric provides an approach to rank available
capacity of physical host machines. Our goal has been to
develop a general metric to support VM scheduling based
on the total shared load on PMs. CPU time is double
weighted because our environmental science models are
primarily CPU bound applications. Many busy metric
variations are possible. Our goal has not been to

develop the perfect metric, but to investigate
implications of VM placement for dynamic scaling.

IV. EXPERIMENTAL INVESTIGATION

A. Experimental Setup

To investigate research questions presented in section 1
we test dynamic scaling for two environmental models: the
Revised Universal Soil Loss Equation – Version 2
(RUSLE2) [26], and the Wind Erosion Prediction System
(WEPS) [27]. RUSLE2 and WEPS are the US Department
of Agriculture–Natural Resource Conservation Service
standard models for soil erosion used by over 3,000 county
level field offices across the United States. RUSLE2 and
WEPS are used to provide soil erosion modeling services to
end users. RUSLE2 was developed primarily to guide
natural resources conservation planning, inventory erosion
rates, and estimate sediment delivery. The Wind Erosion
Prediction System (WEPS) is a daily simulation model
which outputs average soil loss and deposition values for
selected areas and periods of time to predict soil erosion due
to wind.

RUSLE2 was originally developed as a Windows-based
Microsoft Visual C++ desktop application. RUSLE2 is
deployed as a REST/JSON based web service hosted by
Apache Tomcat [28]. WEPS was originally developed as a
desktop Windows application using Fortran95 and Java.
WEPS has been ported to Linux to operate as a REST/JSON
based web service. Both applications are deployed as part of
the USDA’s Cloud Services Innovation Platform [29].

TABLE I. RUSLE2/WEPS APPLICATION COMPONENTS

Component RUSLE2 WEPS

M Model
Apache Tomcat 6.0.20,
Wine 1.0.1, RUSLE2,
OMS3 [31] [32]

Apache Tomcat 6.0.20,
WEPS

D Database

Postgresql-8.4, PostGIS
1.4, soils data (1.7
million shapes),
management data (98k
shapes), climate data
(31k shapes),
4.6 GB total for
Tennessee

Postgresql-8.4, PostGIS
1.4, soils data (4.3
million shapes),
climate/wind data (850
shapes), 17GB total,
western US data.

F File server

nginx 0.7.62 file server,
57k XML files (305MB),
parameterizes RUSLE2
model runs.

nginx 0.7.62 file server,
291k files (1.4 GB),
parameterizes WEPS
model runs.

L Logger
Codebeamer 5.5,
Apache Tomcat (32-bit),
Ia-32libs

Redis 2.2.12
distributed cache server

RUSLE2 and WEPS provide good candidates to
prototype service oriented application scaling. Their
architecture consisting of a web application server,
geospatial relational database, file server, and logging server
is analogous to many service oriented applications.
Components of the models are described in Table I. A PM
ran the HAProxy load balancer to redirect modeling requests
to the active pool of M VMs. HAProxy is a high
performance load balancer that supports proxying TCP and
HTTP socket-based network traffic [30].

4

B. Hardware Configuration

We conducted scaling tests using a Eucalyptus 3.1.2 IaaS
private cloud deployed across nine SUN X6270 blade
servers interconnected by a Giga-bit VLAN. Each blade
server had dual Intel Xeon X5560-quad core 2.8 GHz CPUs,
24GB ram, and dual 15000rpm HDDs. The host operating
system was Ubuntu 12.04 Linux (3.2.0-29) 64-bit server.
The XEN hypervisor version 4.1.2 provided VMs in
paravirtual mode. VM guests ran Ubuntu Linux 9.10
(2.6.31) 64-bit server. Six blade servers were used as
Eucalyptus node-controllers to host VMs, one blade server
hosted the Eucalyptus cloud-controller, cluster-controller,
walrus server, and storage-controller services. Eucalyptus
managed mode networking was used to support network
isolation of VMs using private VLANs. A separate blade
server was used to generate the modeling work load. Another
blade server acted as a client for file transfers to create
background network activity for shared load testing.

Random test generation was used to generate 10,000
unique RUSLE2 and 1,000 WEPS test cases. RUSLE2 tests
used geospatial data from the state of Tennessee. WEPS
tests used data primarily from Kansas and Colorado where
soil erosion due to wind is a large environmental concern.
For scaling tests, individual WEPS model runs were
terminated after 10 minutes. This was necessary because
some randomly generated WEPS runs required more than 30
minutes to execute.

C. Test Configurations

To simulate shared cluster load present in a public cloud
we generated artificial load on the six PMs which hosted
VMs. Table II describes our shared cluster load and the
corresponding PM Busy-Metric scores prior to executing any
tests. Our goal was to simulate potential public cloud load
conditions where users compete for server resources.
Custom scripts generated load activity. CPU load was
created for a specified number of cores by performing
continuous math computations. Disk load was created by
continuously reading, writing, or copying a text file. To
force the system to continuously reread the file, cache
clearing as described previously was performed. To create
network load a VM image file was constantly transferred
to/from a non-cloud blade server. Sftp’s “-l” flag was used
to control the transfer bandwidth.

TABLE II. SHARED CLUSTER LOAD

Cloud Node R2 WEPS CPU Disk Network
Busy-
Metric

PM-1 M D 2 cores@25% .083
PM-2 D L L 4 cores@25% ↑ @20% .285
PM-3 F 6 cores@25% .240
PM-4 M F 5 cores@25% ↓ @20% .240
PM-5 2 cores@25% .082
PM-6 4 cores@25% .156

Table III describes VM size, modeling request rates, and

request rate increments for our scaling tests. An exponential
distribution based random sleep function spaced individual
model requests to simulate a Poisson distribution. This

enabled requests to occur at random intervals while still
achieving the desired constant request rate.

TABLE III. VM SCALING TESTS

VM size
Mem(MB)/
Disk(GB)

Rusle2
Req Rate

WEPS
Req Rate

Increment
RUSLE2

Increment
WEPS

2-core 1024 / 3 .5-16/sec .1-1/sec .25/15s .025/15s

4-core 2048 / 3 1-16/sec .1-1/sec .5/30s .05/30s

8-core 4096 / 3 2-16/sec .1-1/sec 1/min .1/min

Scaling thresholds for hotspot detection were increased
linearly for 2-core, 4-core, and 8-core VM tests. The intent
was to use identical scaling thresholds relative to the number
of VM CPU cores. Figure 1 provides a quartile plot of
RUSLE2 vs. WEPS execution times. WEPS model runs
consume nearly 100% of a CPU core for their duration
averaging from 80-100 seconds compared to a few seconds
for RUSLE2 runs. For RUSLE2 hotspot detection was
performed by monitoring resource utilization of the initial
worker VM as individual model execution times were short
(2s average) and homogenous. Load was evenly balanced
across worker VMs using HAproxy round-robin load
balancing. This approach was insufficient for WEPS, as
model runs had twice the variance and were much longer in
duration. For WEPS hotspot detection we calculated average
CPU time, CPU idle time, and # of context switches for the
entire pool of worker VMs and launched additional worker
VMs when averages exceeded the scaling thresholds.

Figure 1. RUSLE2 vs. WEPS Model Execution Time Quartile Box Plot

TABLE IV. DYNAMIC SCALING TESTS

VM size Rusle 2 WEPS

2-core VMs 20 scale tests 20 scale tests

4-core VMs 20 scale tests 20 scale tests

8-core VMs 20 scale tests 20 scale tests

V. EXPERIMENTAL RESULTS

Table IV summarizes RUSLE2 and WEPS scaling tests
completed to support investigation of our research questions
presented in section 1. Scaling tests were conducted twice,
once using Least-Busy VM placement and again using
round-robin VM placement. 60 test sets of 6500+ Rusle2
model runs, and 60 test sets of 300 WEPS model runs were

5

conducted for a total of over 800,000 model runs. For 2-
core VM WEPS testing, sequential VM launches were
insufficient to achieve good results. To add resources more
rapidly three 2-core VMs were launched in parallel.

TABLE V. SCALING TEST RESULTS

VM size Rusle 2 WEPS

2-core
VMs

lb<rr
p=.014
df=18.2

lb<rr
p=.162
n.s. 1

4-core
VMs

lb<rr
p= 0.065
df = 22.7

lb<rr
p= .035

df = 24.65

8-core
VMs

lb<rr
p=.017
df=24.5

lb<rr
p=.00003
df=33.796

1 (3) 2-core VMs launched per scaling event

Table V shows the statistical significance from t-tests
indicating if performance means for scaling performance
with Least-Busy were different from round-robin.
Normalized performance improvements of Least-Busy VM
placement relative to round-robin are shown in figure 2.
Across all tests, RUSLE2 performance improved by 16% on
average using Least-Busy VM placement, while WEPS
performance improved 12%. Least-Busy exhibited its
fastest differential performance for Rusle2 with 2-core tests
(29.3% faster, 3.2 hrs cputime savings/scaling test), and
WEPS for 8-core tests (19.1% faster, 1.6 hrs cputime
savings/scaling test). Least-Busy VM placement enabled
better model performance for all tests.

Figure 2. Least-Busy VM Placement

Application Performance Improvement (normalized)

Figure 3 shows the normalized resource cost savings in
percentage of VM allocations. Least-Busy VM placement
supported execution of the modeling workload with fewer
resources. RUSLE2 required on average 3.2% fewer VMs
and WEPS 2.2%. The most economical deployment used 2-
core VMs for RUSLE2 (28.92 total cores avg) and 4-core
VMs for WEPS (30.56 total cores avg). Least-Busy VM
placement enabled hosting the same modeling workload
with fewer VMs and total CPU cores. Less physical server

capacity was required for hosting while faster modeling
performance was achieved.

Figure 3. Least-Busy VM Placement
Resource Cost Savings (% of VMs- normalized)

Average VM launch times are shown in figure 4.
Overall stress from hosting the WEPS workload was higher
than RUSLE2 resulting in ~10% slower average VM launch
times. For all tests Least-Busy VM launch times were faster
except for 2-core WEPS tests. For these tests, three VMs
were launched in parallel producing this performance
degradation.

Figure 4. VM Launch Times (seconds):

Least-Busy and Round-Robin VM Placement

Hosting our modeling workload using VMs with fewer
cores provided a greater challenge as more VMs had to be
rapidly launched adding to system stress. For WEPS 2-core
tests launching VMs in parallel increased overhead and
degraded performance illustrating tradeoffs between cluster
size, launch overhead, and application performance. For 2-
core tests, nearly continuous sequential VM launches were
required for RUSLE2 to cope with demand. WEPS model
execution times nearly doubled with 20% of runs timing out
after 10 minutes. Parallel VM launches helped our WEPS 2-
core VM configuration achieve performance similar to 4-
core configurations.

6

VI. CONCLUSIONS

Dynamic scaling performance of service oriented
applications hosted using IaaS clouds depends on carefully
distributing new VMs across physical hosts. Comparing our
Least-Busy VM placement approach versus round-robin we
observed performance improvements up to 29% (RUSLE2)
and 19% (WEPS) with average improvements of 16% and
12% respectively. Dynamically scaling our service oriented
applications with Least-Busy VM placement required 2-3%
fewer VMs while achieving these observed performance
improvements!

Abstraction of physical hardware using IaaS clouds leads
to the simplistic view that resources are homogenous and
scaling can infinitely provide linear increases in
performance. Our results demonstrate that decisions
regarding VM placement location have important
performance and resource cost implications. Ad-hoc VM
placement schemes appear inefficient at managing server
infrastructure while providing resources for dynamic scaling.
Our results demonstrate how private clouds can deliver
potential performance and resource cost savings by
addressing resource management inefficiencies.

ACKNOWLEDGEMENTS

This research is supported by a grant from the US National
Science Foundation’s Computer Systems Research Program
(CNS-1253908).

REFERENCES
[1] CloudStack Admin. Guide, 2013, http://incubator.apache.org/

cloudstack/docs/en-US/Apache_CloudStack/4.0.1-incubating/html/
Admin_Guide

[2] D. Nurmi et al., The Eucalyptus open-source cloud-computing
system, Proc. IEEE International Symposium on Cluster Computing
and the Grid (CCGRID 2009), Shanghai, China, May 18-21, 8p.

[3] Llorente, R et al, 2011. On the Management of Virtual Machines for
Cloud Infrastructures (ch. 6), in Cloud Computing: Principles and
Paradigms, J Wiley & Sons, Inc., Hoboken, NJ, USA.

[4] OpenStack Compute Admin. Manual-Essex (2012.1), 2013,
http://docs.openstack.org/essex/openstack-compute/admin/content/
index.html

[5] P. Saraipalli at al., Load Prediction and Hot Spot Detection Models
for Autonomic Cloud Comp., Proc.4th IEEE/ACM Int.Conf. on
Utility and Cloud Comp (UCC 2011), Melbourne, Australia, Dec
2011, pp. 397-402.

[6] A. Gandhi et al., Optimal power allocation in server farms,
Proceedings of the 11th Int. Conf. on Measurement and Modeling of
Comp. Systems (SIGMETRICS'09), Seattle, WA, USA, June 15-19
2009, pp. 157-168.

[7] T. Wood et al., Sandpiper: Black-box and gray-box resource
management for virtual machines, Computer Networks, vol. 53, 2009,
pp. 2923-2938.

[8] M. Andreolini et al., Dynamic Load Management of Virtual
Machines in Cloud Architectures, Springer Lecture Notes in
Comp.Sci, Social-Informatic and Telecom. Engineering, vol. 34,
2010, pp. 201-214.

[9] A. Beloglazov, R. Buyya, Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in Cloud data centers, Concurrency
and Computation: Prac.and Exp., v24, n13, Sept.2012, pp.1397-1420.

[10] A. Roytman et al., Algorithm design for performance aware VM
consolidation. Tech. rep, Microsoft Research, 2013,MSR-TR-2013-28.

[11] M. Mishra, A. Sahoo, On Theory of VM Placement: Anomalies in
Existing Methodologies and Their Mitigation Using a Novel Vector
Based Approach, IEEE Conf. on Cloud Comp. (CLOUD 2011),
Washington, D.C., USA, pp. 275-282.

[12] Z. Xiao, W. Song, Q. Chen, Dynamic Resource Allocaiton using
Virtual Machines for Cloud Computing Environment, IEEE Trans. on
Parallel and Distributed Systems, vol. 24, No. 6, June 2013, pp. 1107-
1117.

[13] OpenNebula - Open Source Data Center Virtualization, 2013,
http://opennebula.org/documentation:rel3.8:template# placement_section

[14] O. Niehörster et al., Autonomic resource management with support
vector machines, Proc. 12th IEEE/ACM International Conference On
Grid Computing (GRID'11), Lyon, France, Sept 2011, pp. 157-164.

[15] C. Xu, J. Rao, X. Bu, URL: A unified reinforcement learning
approach for autonomic cloud management, Journal of Parallel and
Distributed Computing, vol. 72, 2012, pp. 95-105.

[16] P. Lama, X. Zhou, Efficient server provisioning with control for end-
to-end response time guarantee on multitier clusters, IEEE Trans. on
Parallel and Distributed Systems, vol. 23, No. 1, Jan 2012, pp. 78-86.

[17] P. Lama, X. Zhou, Autonomic provisioning with self-adaptive neural
fuzzy control for end-to-end delay guarantee, Proc. 18th IEEE/ACM
Int. Symp. on Modeling, Analysis and Sim. of Comp.and Telecom
Sys (MASCOTS 2010), Miami Beach FL, Aug 2010, pp.151-160.

[18] D. Jayasinghe et al., Variations in performance and scalability when
migrating n-tier applications to different clouds, Proc.4th IEEE Int.
Conf. on Cloud Comp (Cloud‘11), WashingtonDC,Jul, 2011, p 73-80.

[19] H. Van, F. Tran, J. Menaud, Autonomic Virtual Resource
Management for Service Hosting Platforms, Proc. IEEE Workshop on
SoftEng Challenges in Cloud Comp (ICSE CLOUD '09), Vancouver,
Canada, May 2009, 8p.

[20] G. Kousiouris, T. Cucinotta, T. Varvarigou, The effects of
scheduling, workload type and consolidation scenarios on virtual
machine performance and their prediction through optimized artificial
neural networks, J. of Sys. and Sftwre, vol. 84, 2011, pp. 1270-1291.

[21] N. Bonvin, T. Papaioannou, K. Aberer, Autonomic SLA-driven
provisioning for cloud applications, Proc. IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing (CCGRID 2011),
Newport Beach, CA, USA, 2011, pp. 434-443.

[22] W. Lloyd et al., Performance implications of multi-tier application
deployments on IaaS clouds: Towards performance modeling, Future
Generation Computer Systems, v.29, n.5, 2013, pp.1254-1264.

[23] W. Lloyd et al., Performance Modeling to Support Multi-Tier
Application Deployment to IaaS Clouds, IEEE/ACM Int. Conf. on
Utility and Cloud Computing (UCC 2012), Nov 5-8, 2012, 8p.

[24] AWS Documentation: Concepts – Auto Scaling , 2013,
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/AS_
Concepts.html

[25] A. Kejariwal, Techniques for Optimizing Cloud Footprint, Proc. 1st
IEEE Int. Conf. on Cloud Eng (IC2E), Mar 25-27, 2013, pp. 258-268.

[26] U.S. Department of Agriculture - Agricultural Research Service,
Revised Universal Soil Loss Equation Ver. 2 (RUSLE2),
http://www.ars.usda.gov/SP2UserFiles/Place/64080510/RUSLE/RUS
LE2_Science_Doc.pdf

[27] L. Hagen, “A wind erosion prediction system to meet user needs”, J.
of Soil and Water Conservation Mar/Apr 1991, v.46 (2), pp.105-111.

[28] Apache Tomcat - Welcome, 2011, http://tomcat.apache.org/
[29] W. Lloyd et al., The Cloud Services Innovation Platform - Enabling

Service-Based Environmental Modelling Using IaaS Cloud Comp.
iEMSs 2012 Int. Cong on Env.Modeling and Software, Germany, Jul
2012, 8 p.

[30] HAProxy - The Reliable, High Performance TCP/HTTP Load
Balancer, http://haproxy.1wt.eu/

[31] O. David et al., A software engineering perspective on environmental
modeling framework design: The Object Modeling System,
Environmental Modeling & Software, vol.39, Jan 2013, pp. 201-213.

[32] O. David et al., Rethinking modeling framework design: Object
Modeling System 3.0, Proc. iEMSs 2010 International Congress on
Environmental Modeling and Software, Ottawa, Canada, July 5-8,
2010, 8 p.

	University of Washington Tacoma
	UW Tacoma Digital Commons
	3-1-2014

	Dynamic Scaling for Service Oriented Applications: Implications of Virtual Machine Placement on IaaS Clouds
	Wes Lloyd
	Shrideep Pallickara
	Olaf David
	Mazdak Arabi
	Ken Rojas
	Recommended Citation

	Microsoft Word - ic2e_2014_lloyd_15

