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Abstract— To investigate challenges of multi-tier application 
migration to Infrastructure-as-a-Service (IaaS) clouds we 
performed an experimental investigation by deploying a 
processor bound and input-output bound variant of the 
RUSLE2 erosion model to an IaaS based private cloud.     
Scaling the applications to achieve optimal system throughput 
is complex and involves much more than simply increasing the 
number of allotted virtual machines (VMs).  While scaling the 
application variants a series of bottlenecks were encountered 
unique to an application's processing, I/O, and memory 
requirements, herein referred to as an application's profile.  To 
investigate the impact of provisioning variation for hosting 
multi-tier applications we tested four schemes of VM 
deployments across the physical nodes of our cloud.  
Performance degradation was more pronounced when multiple 
I/O or CPU resource intensive application components were 
co-located on the same physical hardware.  We investigated the 
virtualization overhead incurred using Kernel-based virtual 
machines (KVM) by deploying our application variants to both 
physical and virtual machines.  Overhead varied based on the 
unique characteristics of each application's profile.  We 
observed ~112% overhead for the input/output bound 
application and just ~ 10% overhead for the processor bound 
application.  Understanding an application's profile was found 
to be important for optimal IaaS-based cloud migration and 
scaling. 

Keywords Cloud Computing; Infrastructure-as-a-Service; 
Kernel-based virtual machines (KVM); provisioning variation; 
scalability; virtualization 

I.  INTRODUCTION 
Migration of multi-tier client/server applications to 

Infrastructure-as-a-Service (IaaS) clouds involves 
decomposing applications into an application stack of 
service-based components.  Application stacks may include 
components such as web server(s), proxy server(s), 
database(s), file server(s) and other servers/services.  Service 
isolation involves separating components of the application 
stack so they execute using separate virtual machine (VM) 
instances.  Isolation provides components explicit 
sandboxes, not shared by other systems.  Using hardware 
virtualization, isolation can be accomplished multiple times 
for separate components on a single physical server.  
Previously service isolation using a physical data center 
required significant server real estate.  Hardware 

virtualization refers to the creation and use of VMs which 
run on a physical host computer.  Recent advances in x86-
based virtualization enabled by CPU-specific enhancements 
to support device simulation have eliminated the need for 
specialized versions of guest operating systems as required 
with XEN-based paravirtualization [1].  Full virtualization, 
where the guest operating system is unaware that it is being 
virtualized is now possible as hardware is simulated with no 
direct access to the physical host's hardware.  Virtualization 
provides for resource elasticity where the quantity, location, 
and size of VM allocations can change dynamically to meet 
varying system loads, as well as increased agility to add and 
remove services as an application evolves.    

Together service isolation, hardware virtualization, and 
resource elasticity are key benefits motivating the adoption 
of IaaS based cloud-computing environments such as 
Amazon's Elastic Compute Cloud (EC2).  Despite these 
advantages, cloud-based virtualization and service isolation 
raise new challenges which must be addressed when 
migrating multi-tier applications to IaaS clouds.  
Provisioning variation, the ambiguity over how and where 
application components hosted by VMs are deployed across 
physical machines of a cloud, can lead to unpredictable, and 
even unwanted performance variation [2-4].  Unwanted 
multi-tenancy occurs when multiple resource intensive VMs 
reside on a single physical host computer potentially leading 
to resource contention and application performance 
degradation.  Virtualization incurs overhead because a VM's 
memory, CPU, and device operations must be simulated on 
top of the physical host's operating system.   

In this paper we investigate the following research 
questions: 

1) How can multi-tier client/server applications be 
migrated to Infrastructure-as-a-Service cloud environments, 
and what factors must be accounted for while deploying and 
then scaling  applications for optimal throughput? 

2) What is the impact on application performance as a 
result of provisioning variation?  Does multi-tenancy, 
having multiple application VMs co-located on a single 
physical node machine, impact performance? 

3) What overheads are incurred while using Kernel-
based virtual machines (KVM) for hosting components of a 
multi-tier application? 
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II. RELATED WORK 
Rouk identified the challenge of finding optimal image 

and service composites, a first step in migrating multi-tier 
client/server applications to IaaS clouds in [5].  Chieu et al. 
[6] next proposed a simple method to scale applications 
hosted by VMs by considering the number of active sessions 
and scaling the number of VMs when the number of sessions 
exceed particular thresholds.  Iqbal et al. [7] using a 
Eucalyptus-based private cloud developed a set of custom 
Java-components based on the Typica API which supported 
auto-scaling of a 2-tier web application consisting of web 
server and database VMs.  Their system automatically scaled 
resources when system performance fell below a 
predetermined threshold.  Log file heuristics and CPU 
utilization data were used to determine demand for both 
static and dynamic web content to predict which system 
components were most heavily stressed.  Appropriate VMs 
were then launched to remedy resource shortages.  Their 
approach is applicable web applications where the primary 
content being served is static and/or dynamic web pages.  
Liu and Wee proposed a dynamic switching architecture for 
scaling a web server in [8].  Their work was significant in 
identifying the existence of unique bottlenecks occurring at 
different points when scaling up web applications to meet 
greater system loads.  In each case fundamental 
infrastructure changes were required to surpass each 
bottleneck before scaling further.  They identified four web 
server scaling tiers for their switching architecture including: 
(1) a m1.small Amazon EC2 VM (consists of: 1.7 GB 
memory, 32-bit ~2.6 GHz CPU core, 160 GB HDD), (2) a 
set of load balanced m1.small Amazon EC2 VMs, (3) a 
c1.xlarge Amazon EC2 VM (consists of: 7GB memory, 64-
bit ~2.4 GHz 8 CPU cores, 1690 GB HDD), and (4) the use 
of DNS level load balancing to balance across multiple 
c1.xlarge Amazon EC2 VMs.  DNS load balancing was 
required when more than 800 Mbps of network bandwidth 
was required, the threshold found to exceed an Amazon EC2 
c1.xlarge instance.  Their work is important because they 
identified the complexity of scaling a web server by showing 
that multiple unique bottlenecks occur while scaling 
infrastructure to meet greater system loads.  Wee and Liu 
further demonstrated a cloud-based client-side load balancer, 
an alternative to DNS load balancing, which achieves greater 
throughput than software load balancing [9].  Using 
Amazon's simple storage service (S3) to host client-side 
script files with load balancing logic, they demonstrate load 
balancing against 12 Amazon VMs enabling a total 
throughput greater than the bandwidth of a single c1.xlarge 
VM.  The investigations above made contributions in 
investigating approaches to host and scale web sites hosted 
in cloud environments, but they did not consider issues of 
hosting and scaling more complex multi-tier applications 
such as web services and models in IaaS clouds.    

Schad et al. [3] demonstrated the unpredictability of 
Amazon EC2 VM performance, an effect caused by resource 
contention for physical machine resources and provisioning 
variation of VMs in the cloud.  Using a XEN-based private 
cloud Rehman et al. [2] tested the effects of resource 

contention on Hadoop-based MapReduce performance by 
using IaaS-based cloud VMs to host Hadoop worker nodes.  
They tested the effect of provisioning variation of three 
different provisioning schemes of VM-based Hadoop worker 
nodes and observed performance degradation when too many 
worker nodes were physically co-located.  Zaharia et al. 
further identified that Hadoop's scheduler can cause severe 
performance degradation as a result of being unaware of 
resource contention issues when Hadoop nodes are hosted by 
Amazon EC2-based VMs [4].  They improved upon 
Hadoop's scheduler by proposing the Longest Approximate 
Time to End (LATE) scheduling algorithm and demonstrated 
how this approach better dealt with virtualization issues 
when Hadoop nodes were implemented using Amazon EC2-
based VMs.  Both of these papers identified implications of 
provisioning variation when migrating Hadoop worker nodes 
from a physical cluster to an IaaS-based cloud, but 
implications resulting from provisioning variation of hosting 
components of multi-tier client/server applications was not 
addressed. 

Camargos et al. investigated different approaches to 
virtualizing linux servers and computed numerous 
performance benchmarks for CPU, file and network I/O [10].  
Several virtualization schemes including XEN, KVM, 
VirtualBox, and two container based virtualization 
approaches OpenVZ and Linux V-Server were evaluated.  
Their benchmarks targeted different parts of the system 
including tests of kernel compilation, file transfers, and file 
compression.  Armstrong and Djemame investigated 
performance of VM image propagation using Nimbus and 
OpenNebula two different IaaS cloud infrastructure 
managers [11].  Additionally they benchmarked throughput 
of both XEN and KVM paravirtualized I/O.  Though these 
works investigated performance issues due to virtualization 
neither study investigated the virtualization overhead 
resulting from hosting complete multi-tier applications in 
IaaS clouds. 

III. PAPER CONTRIBUTIONS 
This paper presents the results of an investigation on 

deploying two variants of a popular scientific erosion model 
to an IaaS-based private cloud.  The variants enabled us to 
study application migration for applications with two 
common resource footprints: a processor bound and an I/O-
bound application.  Both application variants provided 
erosion modeling capability as a webservice and were 
implemented using four separate virtual machines on an 
IaaS-based private cloud.  We extend previous work which 
investigated effects of provisioning variation for Hadoop 
worker nodes deployed on IaaS clouds [2][4] and 
virtualization studies which largely used common system 
benchmarks to quantify overhead [10-11].  Our work also 
extends prior research by investigating the migration of 
complete multi-tier applications to IaaS clouds [6-9] and 
makes an important contribution towards understanding the 
implications of application migration, service isolation and 
virtualization overhead to further the evolution and adoption 
of IaaS-based cloud computing. 



 
 

IV. EXPERIMENTAL INVESTIGATION 

A. Experimental Setup 
For our investigation we deployed two variants of the 

Revised Universal Soil Loss Equation – Version 2 
(RUSLE2), an erosion model as a cloud-based web service 
to a private IaaS cloud environment.  RUSLE2 contains both 
empirical and process-based science that predicts rill and 
interrill soil erosion by rainfall and runoff [12].  RUSLE2 
was developed primarily to guide conservation planning, 
inventory erosion rates, and estimate sediment delivery and 
is the USDA-NRCS agency standard model for sheet and rill 
erosion modeling used by over 3,000 field offices across the 
United States.  RUSLE2 is a good candidate to prototype 
multi-tier application migration because its architecture 
consisting of a web server, relational database, file server, 
and logging server serves as a surrogate for classical multi-
tier client/server based applications.   

RUSLE2 was originally developed as a Windows-based 
Microsoft Visual C++ desktop application.  To facilitate 
functioning as a web service a modeling engine known as the 
RomeShell was added to RUSLE2.   The Object Modeling 
System 3.0 (OMS 3.0) framework [13-14] using WINE [15] 
provides middleware to facilitate model to web service inter-
operation.  OMS was developed by the USDA–ARS in 
cooperation with Colorado State University and supports 
component-oriented simulation model development in Java, 
C/C++ and FORTRAN.  OMS provides numerous tools 
supporting data retrieval, GIS, graphical visualization, 
statistical analysis and model calibration.  The RUSLE2 web 
service was implemented as a JAX-RS RESTful JSON-
based service hosted by Apache Tomcat [16].     

A Eucalyptus 2.0 [17] IaaS private cloud was built and 
hosted by Colorado State University which consisted of 9 
SUN X6270 blade servers on the same chassis sharing a 
private 1 Giga-bit VLAN with dual Intel Xeon X5560-quad 
core 2.8 GHz CPUs each with 24GB ram and 146GB HDDs.  
The host operating system was Ubuntu Linux (2.6.35-22) 64-
bit server 10.10.  VM guests ran Ubuntu Linux (2.6.31-22) 
32 and 64-bit server 9.10.  8 blade servers were configured 
as Eucalyptus node-controllers, and 1 blade server was 
configured as the Eucalyptus cloud-controller, cluster-
controller, walrus server, and storage-controller.  Eucalyptus-
based managed mode networking was configured using a 
managed Ethernet switch isolating VMs on their own private 
VLANs.   

QEMU version 0.12.5, a Linux-based PC system 
emulator, was used to provide VMs.  QEMU makes use of 
the KVM Linux kernel modules (version 2.6.35-22) to 
achieve full virtualization of the guest operating system.  
Recent enhancements to Intel/AMD x86-based CPUs 
provide special CPU-extensions to support full virtualization 
of guest operating systems without modification.  With these 
extensions device emulation overhead can be reduced to 
improve performance.  One limitation of full virtualization 
versus XEN-based paravirtualization is that network and disk 
devices must be fully emulated.  XEN-based 
paravirtualization requires special versions of both the host 

and guest operating systems with the benefit of near-direct 
physical device access [10].    

B. Application Components 
Table I describes the four VM image types used to 

implement the components of RUSLE2's application stack. 
The Model M VM hosts the model computation and web 
services using Apache Tomcat.  The Database D VM hosts 
the spatial database which resolves latitude and longitude 
coordinates to assist in parameterizing climate, soil, and 
management data for RUSLE2.  Postgresql was used as a 
relational database and PostGIS extensions were used to 
support spatial database functions [18-19].  The file server F 
VM was used by the RUSLE2 model to acquire XML files 
to parameterize data for model runs.  NGINX [20], a 
lightweight high performance web server provided access to 
a library of static XML files which were on average ~5KB 
each.  The logging L VM provided historical tracking of 
modeling activity.  The codebeamer tracking facility was 
used to log model activity [21].  Codebeamer provides an 
extensive customizable GUI and reporting facility.  A simple 
JAX-RS RESTful JSON-based web service was developed 
to encapsulate logging functions to decouple Codebeamer 
from the RUSLE2 web service and also to provide a logging 
queue to prevent logging delays from interfering with the 
RUSLE2 webservice.  HAProxy was used to provide round-
robin load balancing of M and D VMs.  HAProxy is a 
dynamically configurable very fast load balancer which 
supports proxying both TCP and HTTP socket-based 
network traffic [22]. 

TABLE I.  VIRTUAL MACHINE TYPES 

VM Description  

M Model 
64-bit Ubuntu 9.10 server w/ Apache Tomcat 6.0.20, 
Wine 1.0.1, RUSLE2, Object Modeling System 
(OMS 3.0) 

D Database 

64-bit Ubuntu 9.10 server w/ Postgresql-8.4, and 
PostGIS 1.4.0-2.   
Spatial database consists of soil data (1.7 million 
shapes, 167 million points), management data (98 
shapes, 489k points), and climate data (31k shapes, 3 
million points), totaling 4.6 GB for the state of TN 
and CO 

F File server 
64-bit Ubuntu 9.10 server w/ nginx 0.7.62 to serve 
XML files which parameterize the RUSLE2 model.  
57,185 XML files consisting of 305MB. 

L Logger 
32-bit Ubuntu 9.10 server with Codebeamer 5.5 
running on Tomcat.  Custom RESTful JSON-based 
logging wrapper web service.   

C. Component Deployments 
Our application stack of 4 components can be deployed 

15 possible ways across 4 physical node computers.  Tables 
II shows the four stack deployments we tested labeled as P1-
P4 and V1-V4 respectively.  P1-P4 denotes physical stack 
deployments where components were deployed on physical 
machines by installing software directly on the host 
operating system.  V1-V4 denotes virtual stack deployments 
where components were imaged and then launched as VMs 
in our private Eucalyptus cloud.  Eucalyptus does not 
provide control where VMs are physically deployed.  To test 



 
 

(V1-V4) deployments placeholder VMs were launched and 
terminated to force the desired VM placements as using 
Eucalyptus' round-robin VM deployment scheme.  We 
expected the D and M components to be the most resource 
intensive components motivating our interest to test their 
deployment in isolation on physical nodes (P2/V2 and 
P4/V4).  P1/V1 tested the deployment of all components on a 
single machine.  P1/V1 should benefit from locality of 
dependent services which should reduce dependence on 
network I/O with the added cost of greater contention for 
local disk and CPU resources.  P3/V3 tested running each 
component in isolation, allowing components the greatest 
freedom to fully utilize local CPU and disk resources, at the 
expense of greater network I/O requirements.   

TABLE II.  PHYSICAL (P) AND VIRTUAL (V) STACKS DEPLOYMENTS 

 Node 1 Node 2 Node 3 Node 4 

P1/V1 M D F L    

P2/V2 M D F L   

P3/V3 M D F L 

P4/V4 M L F D   

 
Eucalyptus 2.0 allows custom definitions for VM sizes 
(small, medium, large) supporting customization of the 
number of virtual CPUs, memory, and disk size allocations.  
We tested a variety of VM resource allocations for our 
application VMs.  For some tests we over-allocated the 
number of virtual CPUs far beyond the number of physical 
CPUs present on the host machine.  For stack deployments 
with multi-tenancy this increased contention for 
computational resources.   

D. Testing Infrastructure 
The RUSLE2 web service supports individual model 

runs and ensemble runs which are groups of modeling 
requests bundled together.  To invoke the web service a 
client sends a JSON object including parameters for 
management practice, slope length, steepness, latitude, and 
longitude.  Model results are computed and returned as a 
JSON object.  Ensemble runs are processed by dividing the 
set of modeling requests into individual requests which are 
resent to the web service, similar to the “map” function of 
MapReduce.  A configurable number of worker threads 
concurrently executes individual runs of the ensemble, and 
upon completion results are combined (reduced) into a single 
JSON response object and returned.  A simple program 
generated randomized ensemble tests of 25, 100, and 1000 
runs.  Latitude and longitude coordinates were randomly 
selected within a large bounding box from the state of 
Tennessee.  Slope length, steepness, and the management 
practice parameters were also randomized.  Randomization 
of latitude and longitude resulted in variable spatial query 
execution times due to the variable complexity of the 
polygons coordinates intersected with.  To counteract the 
effect of caching, before each ensemble test was run, all 
application server components were stopped and restarted 

and a 25-model run ensemble test was executed to warm up 
the system.  The warm up test was warranted after we 
observed postgresql performing slowly on initial spatial 
queries upon startup.   

To measure performance, the RUSLE2 model and web 
service code was instrumented to capture timing data for 
various operations and returned in the JSON response 
objects.  Custom parsing programs were used to extract 
timing data from the JSON objects for analysis and graphing.  
Captured timing data included: “fileIO“ the time required to 
load data files provided by nginx,   “model” the time spent 
shelling to the operating system to execute the model using 
WINE, “climate/soil query”  the time spent executing spatial 
queries,  “logging” the time spent submitting models to the 
logger, “overhead” representing all operations not 
specifically timed, and “total” the total time of the web 
service call from start to finish.  “fileIO” was a subset of the  
“model” time because nginx file I/O occurred simultaneously 
during model execution. 

E. Application Variants 
Our investigation tested two variants of RUSLE2 which 

we refer to herein as the “d-bound” for the database bound 
variant and the “m-bound” for the model bound variant.  By 
testing two variants of RUSLE2 we hoped to gain insights on 
two common types of multi-tier applications, an application 
bound by the database tier, and an application bound by the 
middleware (model) tier.  For the d-bound version of 
RUSLE2 two primary spatial queries were modified to 
perform a join on a nested query, while the m-bound variant 
was unmodified.  This modification significantly increased 
demand for computational resources from the database.  The 
d-bound variant should require the same resources as the m-
bound plus additional processing to compute results of 
several thousand additional queries making the d-bound 
application more CPU bound than the m-bound variant.    

V. EXPERIMENTAL RESULTS 

A. Application Profiling 
An application's profile refers to its processing, I/O, and 

memory requirements which change over time as an 
application evolves.  To asses the application profiles of the 
RUSLE2 variants we used the V1 stack configuration.  An 
identical 100-model run ensemble test was used to determine 
the time distribution of model operations as shown in figure 
1.  For the d-bound application the “climate” and “soil” 
spatial queries  consumed about ~77% of “total” execution 
time, while the “model” spent about ~22%, with remaining 
time split between “logging” time and “overhead”.  
“Logging” time was negligible because the logger queued 
logging requests which then executed independently of 
model execution.  “FileIO” a subset of the “model” time took 
approximately 3.5% of the overall time.  D-bound climate 
queries were generally fast compared to soil queries.  Much 
of the execution time reported for climate queries we 
observed was time spent waiting for soil queries to complete.  
For the m-bound application the model consumed ~91% of 
the “total” execution time, while spatial queries accounted 



 
 

for about 1%.  “Overhead” was just over 8% of the “total” 
time, while “FileIO” operations, a subset of “model” time, 
increased to 19%.  Performance for the d-bound and m-
bound application variants appeared bounded by their 
respective named components D and M. 

The application variants were next tuned to minimize the 
100-model run ensemble test execution time.  Virtual 
resource allocations were determined for CPU cores, 
memory size, and disk space.  Application tuning included 
determining an optimal number of shared database 
connections for the database connections pool, and the 
number of model execution (worker) threads for ensemble 
runs.  For each tuning step we identified ideal parameter 
configurations by identifying when performance 
improvements leveled off and appeared as normal variation 
or when performance actually decreased.  

To determine an optimal number of database connections 
we tested using a D VM allocated with 6 virtual cores while 
using 6 worker threads to run models.  Figure 2 shows the 
best performance for the d-bound application occurred when 
using approximately 5 database connections, while the 
number of database connections did not appear to have a 
significant impact on the m-bound application.  For 
subsequent tests we used 5 and 8 connections for the d-
bound and m-bound applications respectively.  According to 
the postgresql documentation individual connections can 
utilize at most only 1 CPU core leading to our assignment of 
8 connections and 8 cores for the m-bound application.   

For the d-bound application with 5 shared connections, 
we varied the D VM's number of virtual cores to test the 
impact on performance as shown in Figure 3.  The best 
performance was observed while allocating approximately 6 
virtual cores with a slight performance degradation seen 
when using additional virtual cores.  Sharing 16 database 
connections while increasing the number of D VM virtual 
cores did not improve performance.  When observing the D 
VM's KVM process on the host machine, we observed with 
virtual CPU allocations (>6), the D VM did not utilize more 
than ~500-600% of the 8-core physical machine's CPU 
capacity, where 100% represents a fully allocated CPU core.  
It was unclear if this limitation was caused by postgresql or 
through the use of KVM. 

 

 
Figure 1.  RUSLE2 application time footprint 

 
Figure 2.  V1 stack with variable database connections 

 
Figure 3.  V1 stack d-bound with variable D VM virtual CPUs 

 

 
Figure 4.  V1 stack with variable M VM virtual CPUs 

 
Figure 5.  V1 stack with variable worker threads 

 



 
 

 
Figure 6.  D-bound ensemble time with variable D VMs 

Figure 4 shows the average model run time while varying 
the number of virtual cores allocated to the M VM.  Optimal 
performance was observed using 5 or more virtual cores for 
the d-bound application and 8 virtual cores for the m-bound 
application.  The m-bound application benefited from 
additional virtual cores but suffered when cores were over-
allocated beyond the number of physical cores on the host.  
Figure 5 shows the 100-model run ensemble time using 16 
and 8 shared database connections for the d-bound and m-
bound applications respectively.  Each worker thread 
concurrently executed RUSLE2 model runs.  Using 6 worker 
threads appeared to be an optimal number for the d-bound 
application with similar performance seen using 5 or 7 
worker threads.  For the m-bound application using at least 6 
threads appeared optimal.  For the m-bound application, we 
tested using up to 100 worker threads but did not observe a 
significant performance difference versus 6 threads.  

Upon completion of application tuning for the V1 
provisioning scheme the d-bound application required an 
average of ~120 seconds to complete a 100-model run 
ensemble test, and the m-bound application ~32 seconds. 

B. Virtual Resource Scaling 
After tuning a V1 deployment of our application variants 

we next scaled the variants to fully utilize all available 
resources of our private cloud to obtain optimal performance 
for 100-model run ensemble tests.  Additional D and M VMs 
were allocated for the d-bound and m-bound applications.  
Figure 6 shows the performance of the d-bound application 
when we allocated multiple D VMs with each running in 
isolation on a separate physical machine.  For the m-bound 
application allocating additional D VMs was not tested 
because we were unable to fully saturate a single D VM.  We 
tested the performance using 5 shared database connections 
and also database connections equal to the number of D VMs 
multiplied by 5.  Increasing the number of database 
connections was required to ensure that the tomcat server 
would have at least one connection to each postgresql 
database.  Scaling the number of D VMs was shown to result 
in a favorable performance improvement until approximately 
3 to 4 D VMs.  Beyond this performance improvements 
could not be differentiated as the results appeared similar to 
variance.   

 
Figure 7.  Ensemble runtime with variable worker threads 

 
Figure 8.  Ensemble runtime with variable M VMs 

 
Figure 9.  M-bound with variable M VMs and worker  threads 

 
Figure 10.  M-bound with 16 M VMs variable worker threads 

 



 
 

To move past the d-bound application bottleneck the 
number of worker threads was increased as shown in figure 
7.  For the d-bound application we observed a bottleneck 
when 40 shared database connections and 24 concurrent 
worker threads were used.  Increasing beyond 24 worker 
threads appeared to degrade performance.  For the m-bound 
application only 1 D VM is used for tests in figure 7, but a 
similar performance result is seen when exceeding 24 worker 
threads.  To realize further performance improvements both 
applications required us to next increase the number of M 
VMs. 

Figure 8 shows the speed improvement realized by 
scaling the number of M VMs.  While scaling the number of 
M VMs, a fixed number of 24 and 8 worker threads were 
used for the d-bound and m-bound applications respectively.  
For the d-bound application beyond allocating 3 M VMs 
performance gains appeared minimal.  At 7 M VMs we 
observed slight performance degradation.  At the completion 
of d-bound application scaling the 100-model run ensemble 
test executed in 21.8 seconds, 5.5x faster than before VM 
scaling using {8 D, 6 M, 1 F, 1 L} VMs with 24 worker 
threads and 40 shared database connections per M  VM. 

For the m-bound application a bottleneck was 
encountered after allocating 4 M VMs using 8 worker 
threads and 8 shared database connections.  To surpass the 
bottleneck the number of worker threads was scaled.  For 
each M VM, an additional 8 worker threads were allocated 
starting with 8 worker threads for a single M VM.  Figure 9 
shows the 100-model run ensemble time while scaling to 16 
M VMs with 128 worker threads.  The first 8 M VMs were 
deployed on separate physical machines.  Beyond this we 
lacked additional physical hosts to run every M VMs in 
isolation so multiple M VMs were deployed on the physical 
hosts.   

A series of 1000-model run ensemble tests were made to 
assist tuning the optimal number of worker threads for the 16 
M VM deployment shown in figure 10.  Optimal ensemble 
test times were observed using 48 worker threads.  At the 
conclusion of m-bound application scaling the 100-model 
run ensemble test executed in 6.7 seconds, 4.8x faster than 
before M VM scaling using {16 M, 1 D, 1 F, 1 L} VMs with 
48 worker threads and 8 shared database connections per M 
VM.   

C. Provisioning Variation 
We tested performance using the physical (P1-P4) and 

virtual (V1-V4) stack provisioning schemes identified in 
table II.  Timing results for the 100-model run ensemble tests 
for each stack provisioning for both application variants are 
shown in Table III.  To determine if the stack provisioning 
schemes performed differently from each other we checked 
if schemes varied more than 1 standard deviation from each 
other.  For all tests we observed the slowest performance 
when all application components were co-located on the 
same physical machine (P1/V1), an expected result.  For the 
virtual tests we observed the best performance when all 
components ran in physical isolation (V3), also an expected 
resulted.  For the m-bound application we observed slower 

performance when the M VM shared physical resources 
(V1/V4) with other components and for the d-bound when 
the D VM shared physical resources (V1/V2).  The impact of 
provisioning variation on application performance appeared 
dependent on characteristics of the application profile.  Best 
performance required the most computational and I/O 
intensive components to be run in physical isolation.    

TABLE III.  M-BOUND VS D-BOUND PROVISIONING VARIATION 

 M-Bound D-Bound 

 Total (sec) Rank Total (sec) Rank 

P1/V1 16.15 / 33.65 4 110.21 / 123.61 4 
P2/V2 15.89 / 30.99 2 99.08 / 123.43 '1 / 3 
P3/V3 15.59 / 29.50 1 103.80 / 115.98 '2 / 1 
P4/V4 16.11 / 33.65 3 104.17 / 116.05 '3 / 2 

D. Virtualization Overhead 
To investigate the virtualization overhead resulting from 

using KVM performance the P1 and V1 provisioning 
schemes were compared by executing 1000-model runs.  The 
V1 d-bound and m-bound applications used 5 and 8 virtual 
cores respectively for the M VM.  Both applications used 6 
virtual cores for the D VM and 5 virtual cores for the F and L 
VMs.  For both physical and virtual deployments the d-
bound application used 6 worker threads and 5 shared 
database connections, while the m-bound application used 8 
worker threads and 8 shared database connections.    

TABLE IV.  P1 VS V1 KVM-VIRTUALIZATION OVERHEAD 

 D-bound M-bound 

 Virt. O/H 
P1 

 avg (ms) 
V1 

avg (ms)  Virt. O/H 
P1 

avg (ms) 
V1 

avg (ms) 

fileIO 319.70% 55.77 234.06 463.54% 56.57 318.79 
model 54.50% 968.47 1496.24 100.16% 815.56 1632.46 
climate query -11.41% 691.86 612.95 404.54% 1.28 6.45 
soil query 3.25% 4371.20 4513.39 12.04% 11.84 13.26 
logging 1360.69% 0.32 4.72 2680.58% 0.35 9.59 
overhead 395.14% 14.30 70.81 740.02% 15.54 130.54 
total 10.78% 6046.16 6698.10 112.22% 844.56 1792.30 
 

Table IV shows timing of the physical versus virtual 
stacks.  The d-bound application's virtualization overhead for 
the total system was quite low at just 10.78%, while the m-
bound application was 112.22%.  When examining the 
application footprints of the m-bound and d-bound 
applications, the m-bound application appears more I/O 
bound with nearly 20% (~319 ms) of the total model 
execution time spent in “fileIO” versus just 3.5% (~234 ms) 
for the d-bound application.  Similarly “overhead” which 
consisted primarily of writing logging files was 7.3% (~131 
ms) of the total model execution time for the m-bound 
application, but only 1.1% (~71 ms) for the d-bound 
application.  For the m-bound application I/O operations 
were not only a greater percentage of the overall application 
footprint, but the operations themselves took longer to 
perform.  We suspect this result was due to greater 



 
 

contention for CPU and I/O resources because of the higher 
density of I/O operations for the m-bound application.  This 
effect was barely seen with the P1 provisioning scheme 
because the physical machines performed direct device I/O 
and did not experience by additional resource contention 
from device emulation.  The d-bound application was less 
impacted by I/O virtualization overhead because most of the 
execution time 77% (~5053 ms) was spent performing CPU-
bound nested database queries.  Our results demonstrate that 
application profiles which detail how applications utilize 
resources (CPU, memory, I/O) are helpful in determining 
application performance when virtualized.    

VI. CONCLUSIONS 
Two variants of the RUSLE2 erosion model serving as 

surrogates for common multi-tier application architectures 
were tested to investigate application migration to IaaS 
clouds.  While scaling both application variants, different 
bottlenecks were encountered based on each variant's 
application profile.  Surmounting these bottlenecks required 
custom tuning of application parameters and/or virtual 
resource allocations.  Simply increasing the number of VMs 
did not lead to optimal application throughput.  Application 
scaling required understanding the application profile as well 
as dependencies among the application components. 

Provisioning variation impacted performance based on 
application profiles.  Best performance was observed when 
the most CPU and I/O intensive components were isolated 
on separate physical hardware whereas performance 
degradation occurred when too many resource intensive 
components were co-located highlighting the importance of 
considering an application's profile for VM placement across 
physical machines.  

Virtualization overhead varied based on the profile of the 
application being virtualized.  The d-bound application, 
which was more CPU-bound, appeared less impacted by 
virtualization overhead (~11% overhead) whereas the m-
bound application, which appeared more I/O bound, showed 
a greater performance degradation due to virtualization 
(~112% overhead).  As file and network device performance 
varies with different virtualization approaches a future 
investigation is planned to test other types of virtualization 
including XEN-based full and para-virtualization to better 
understand implications of hosting multi-tier applications 
using different types of virtualization. 

In conclusion, application scaling, provisioning variation 
and virtualization overhead all appear impacted by an 
application's profile.  We have explored how an application's 
profile relates to interactions between its constituent 
components and the corresponding implications for 
migration.  Once an application's profile is known, this can 
guide the efficient deployment of the application to IaaS 
clouds while accounting for scaling and throughput 
requirements. 
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