
University of Washington Tacoma
UW Tacoma Digital Commons

School of Engineering and Technology Publications School of Engineering and Technology

2011

Migration of Multi-Tier Applications to
Infrastructure-As-A-Service Clouds: An
Investigation Using Kernel-Based Virtual Machines
Wes Lloyd
University of Washington Tacoma, wlloyd@uw.edu

Shrideep Pallickara

Olaf David

Jim Lyon

Mazdak Arabi

See next page for additional authors

Follow this and additional works at: https://digitalcommons.tacoma.uw.edu/tech_pub

This Conference Proceeding is brought to you for free and open access by the School of Engineering and Technology at UW Tacoma Digital
Commons. It has been accepted for inclusion in School of Engineering and Technology Publications by an authorized administrator of UW Tacoma
Digital Commons.

Recommended Citation
Lloyd, Wes; Pallickara, Shrideep; David, Olaf; Lyon, Jim; Arabi, Mazdak; and Rojas, Ken, "Migration of Multi-Tier Applications to
Infrastructure-As-A-Service Clouds: An Investigation Using Kernel-Based Virtual Machines" (2011). School of Engineering and
Technology Publications. 21.
https://digitalcommons.tacoma.uw.edu/tech_pub/21

https://digitalcommons.tacoma.uw.edu?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/tech_pub?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/institute_tech?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/tech_pub?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/tech_pub/21?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors
Wes Lloyd, Shrideep Pallickara, Olaf David, Jim Lyon, Mazdak Arabi, and Ken Rojas

This conference proceeding is available at UW Tacoma Digital Commons: https://digitalcommons.tacoma.uw.edu/tech_pub/21

https://digitalcommons.tacoma.uw.edu/tech_pub/21?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages

Migration of Multi-tier Applications to Infrastructure-as-a-Service Clouds:
An Investigation Using Kernel-based Virtual Machines

Wes Lloyd1,2, Shrideep Pallickara1, Olaf David1,2,
Jim Lyon2, Mazdak Arabi2

1Department of Computer Science
2Department of Civil and Environmental Engineering

Colorado State University, Fort Collins, USA
wes.lloyd, shrideep.pallickara, olaf.david, jim.lyon,

mazdak.arabi@colostate.edu

Ken Rojas
USDA-Natural Resource Conservation Service

Fort Collins, Colorado USA
Ken.Rojas@ftc.usda.gov

Abstract— To investigate challenges of multi-tier application
migration to Infrastructure-as-a-Service (IaaS) clouds we
performed an experimental investigation by deploying a
processor bound and input-output bound variant of the
RUSLE2 erosion model to an IaaS based private cloud.
Scaling the applications to achieve optimal system throughput
is complex and involves much more than simply increasing the
number of allotted virtual machines (VMs). While scaling the
application variants a series of bottlenecks were encountered
unique to an application's processing, I/O, and memory
requirements, herein referred to as an application's profile. To
investigate the impact of provisioning variation for hosting
multi-tier applications we tested four schemes of VM
deployments across the physical nodes of our cloud.
Performance degradation was more pronounced when multiple
I/O or CPU resource intensive application components were
co-located on the same physical hardware. We investigated the
virtualization overhead incurred using Kernel-based virtual
machines (KVM) by deploying our application variants to both
physical and virtual machines. Overhead varied based on the
unique characteristics of each application's profile. We
observed ~112% overhead for the input/output bound
application and just ~ 10% overhead for the processor bound
application. Understanding an application's profile was found
to be important for optimal IaaS-based cloud migration and
scaling.

Keywords Cloud Computing; Infrastructure-as-a-Service;
Kernel-based virtual machines (KVM); provisioning variation;
scalability; virtualization

I. INTRODUCTION
Migration of multi-tier client/server applications to

Infrastructure-as-a-Service (IaaS) clouds involves
decomposing applications into an application stack of
service-based components. Application stacks may include
components such as web server(s), proxy server(s),
database(s), file server(s) and other servers/services. Service
isolation involves separating components of the application
stack so they execute using separate virtual machine (VM)
instances. Isolation provides components explicit
sandboxes, not shared by other systems. Using hardware
virtualization, isolation can be accomplished multiple times
for separate components on a single physical server.
Previously service isolation using a physical data center
required significant server real estate. Hardware

virtualization refers to the creation and use of VMs which
run on a physical host computer. Recent advances in x86-
based virtualization enabled by CPU-specific enhancements
to support device simulation have eliminated the need for
specialized versions of guest operating systems as required
with XEN-based paravirtualization [1]. Full virtualization,
where the guest operating system is unaware that it is being
virtualized is now possible as hardware is simulated with no
direct access to the physical host's hardware. Virtualization
provides for resource elasticity where the quantity, location,
and size of VM allocations can change dynamically to meet
varying system loads, as well as increased agility to add and
remove services as an application evolves.

Together service isolation, hardware virtualization, and
resource elasticity are key benefits motivating the adoption
of IaaS based cloud-computing environments such as
Amazon's Elastic Compute Cloud (EC2). Despite these
advantages, cloud-based virtualization and service isolation
raise new challenges which must be addressed when
migrating multi-tier applications to IaaS clouds.
Provisioning variation, the ambiguity over how and where
application components hosted by VMs are deployed across
physical machines of a cloud, can lead to unpredictable, and
even unwanted performance variation [2-4]. Unwanted
multi-tenancy occurs when multiple resource intensive VMs
reside on a single physical host computer potentially leading
to resource contention and application performance
degradation. Virtualization incurs overhead because a VM's
memory, CPU, and device operations must be simulated on
top of the physical host's operating system.

In this paper we investigate the following research
questions:

1) How can multi-tier client/server applications be
migrated to Infrastructure-as-a-Service cloud environments,
and what factors must be accounted for while deploying and
then scaling applications for optimal throughput?

2) What is the impact on application performance as a
result of provisioning variation? Does multi-tenancy,
having multiple application VMs co-located on a single
physical node machine, impact performance?

3) What overheads are incurred while using Kernel-
based virtual machines (KVM) for hosting components of a
multi-tier application?

mailto:Ken.Rojas@ftc.usda.gov�

II. RELATED WORK
Rouk identified the challenge of finding optimal image

and service composites, a first step in migrating multi-tier
client/server applications to IaaS clouds in [5]. Chieu et al.
[6] next proposed a simple method to scale applications
hosted by VMs by considering the number of active sessions
and scaling the number of VMs when the number of sessions
exceed particular thresholds. Iqbal et al. [7] using a
Eucalyptus-based private cloud developed a set of custom
Java-components based on the Typica API which supported
auto-scaling of a 2-tier web application consisting of web
server and database VMs. Their system automatically scaled
resources when system performance fell below a
predetermined threshold. Log file heuristics and CPU
utilization data were used to determine demand for both
static and dynamic web content to predict which system
components were most heavily stressed. Appropriate VMs
were then launched to remedy resource shortages. Their
approach is applicable web applications where the primary
content being served is static and/or dynamic web pages.
Liu and Wee proposed a dynamic switching architecture for
scaling a web server in [8]. Their work was significant in
identifying the existence of unique bottlenecks occurring at
different points when scaling up web applications to meet
greater system loads. In each case fundamental
infrastructure changes were required to surpass each
bottleneck before scaling further. They identified four web
server scaling tiers for their switching architecture including:
(1) a m1.small Amazon EC2 VM (consists of: 1.7 GB
memory, 32-bit ~2.6 GHz CPU core, 160 GB HDD), (2) a
set of load balanced m1.small Amazon EC2 VMs, (3) a
c1.xlarge Amazon EC2 VM (consists of: 7GB memory, 64-
bit ~2.4 GHz 8 CPU cores, 1690 GB HDD), and (4) the use
of DNS level load balancing to balance across multiple
c1.xlarge Amazon EC2 VMs. DNS load balancing was
required when more than 800 Mbps of network bandwidth
was required, the threshold found to exceed an Amazon EC2
c1.xlarge instance. Their work is important because they
identified the complexity of scaling a web server by showing
that multiple unique bottlenecks occur while scaling
infrastructure to meet greater system loads. Wee and Liu
further demonstrated a cloud-based client-side load balancer,
an alternative to DNS load balancing, which achieves greater
throughput than software load balancing [9]. Using
Amazon's simple storage service (S3) to host client-side
script files with load balancing logic, they demonstrate load
balancing against 12 Amazon VMs enabling a total
throughput greater than the bandwidth of a single c1.xlarge
VM. The investigations above made contributions in
investigating approaches to host and scale web sites hosted
in cloud environments, but they did not consider issues of
hosting and scaling more complex multi-tier applications
such as web services and models in IaaS clouds.

Schad et al. [3] demonstrated the unpredictability of
Amazon EC2 VM performance, an effect caused by resource
contention for physical machine resources and provisioning
variation of VMs in the cloud. Using a XEN-based private
cloud Rehman et al. [2] tested the effects of resource

contention on Hadoop-based MapReduce performance by
using IaaS-based cloud VMs to host Hadoop worker nodes.
They tested the effect of provisioning variation of three
different provisioning schemes of VM-based Hadoop worker
nodes and observed performance degradation when too many
worker nodes were physically co-located. Zaharia et al.
further identified that Hadoop's scheduler can cause severe
performance degradation as a result of being unaware of
resource contention issues when Hadoop nodes are hosted by
Amazon EC2-based VMs [4]. They improved upon
Hadoop's scheduler by proposing the Longest Approximate
Time to End (LATE) scheduling algorithm and demonstrated
how this approach better dealt with virtualization issues
when Hadoop nodes were implemented using Amazon EC2-
based VMs. Both of these papers identified implications of
provisioning variation when migrating Hadoop worker nodes
from a physical cluster to an IaaS-based cloud, but
implications resulting from provisioning variation of hosting
components of multi-tier client/server applications was not
addressed.

Camargos et al. investigated different approaches to
virtualizing linux servers and computed numerous
performance benchmarks for CPU, file and network I/O [10].
Several virtualization schemes including XEN, KVM,
VirtualBox, and two container based virtualization
approaches OpenVZ and Linux V-Server were evaluated.
Their benchmarks targeted different parts of the system
including tests of kernel compilation, file transfers, and file
compression. Armstrong and Djemame investigated
performance of VM image propagation using Nimbus and
OpenNebula two different IaaS cloud infrastructure
managers [11]. Additionally they benchmarked throughput
of both XEN and KVM paravirtualized I/O. Though these
works investigated performance issues due to virtualization
neither study investigated the virtualization overhead
resulting from hosting complete multi-tier applications in
IaaS clouds.

III. PAPER CONTRIBUTIONS
This paper presents the results of an investigation on

deploying two variants of a popular scientific erosion model
to an IaaS-based private cloud. The variants enabled us to
study application migration for applications with two
common resource footprints: a processor bound and an I/O-
bound application. Both application variants provided
erosion modeling capability as a webservice and were
implemented using four separate virtual machines on an
IaaS-based private cloud. We extend previous work which
investigated effects of provisioning variation for Hadoop
worker nodes deployed on IaaS clouds [2][4] and
virtualization studies which largely used common system
benchmarks to quantify overhead [10-11]. Our work also
extends prior research by investigating the migration of
complete multi-tier applications to IaaS clouds [6-9] and
makes an important contribution towards understanding the
implications of application migration, service isolation and
virtualization overhead to further the evolution and adoption
of IaaS-based cloud computing.

IV. EXPERIMENTAL INVESTIGATION

A. Experimental Setup
For our investigation we deployed two variants of the

Revised Universal Soil Loss Equation – Version 2
(RUSLE2), an erosion model as a cloud-based web service
to a private IaaS cloud environment. RUSLE2 contains both
empirical and process-based science that predicts rill and
interrill soil erosion by rainfall and runoff [12]. RUSLE2
was developed primarily to guide conservation planning,
inventory erosion rates, and estimate sediment delivery and
is the USDA-NRCS agency standard model for sheet and rill
erosion modeling used by over 3,000 field offices across the
United States. RUSLE2 is a good candidate to prototype
multi-tier application migration because its architecture
consisting of a web server, relational database, file server,
and logging server serves as a surrogate for classical multi-
tier client/server based applications.

RUSLE2 was originally developed as a Windows-based
Microsoft Visual C++ desktop application. To facilitate
functioning as a web service a modeling engine known as the
RomeShell was added to RUSLE2. The Object Modeling
System 3.0 (OMS 3.0) framework [13-14] using WINE [15]
provides middleware to facilitate model to web service inter-
operation. OMS was developed by the USDA–ARS in
cooperation with Colorado State University and supports
component-oriented simulation model development in Java,
C/C++ and FORTRAN. OMS provides numerous tools
supporting data retrieval, GIS, graphical visualization,
statistical analysis and model calibration. The RUSLE2 web
service was implemented as a JAX-RS RESTful JSON-
based service hosted by Apache Tomcat [16].

A Eucalyptus 2.0 [17] IaaS private cloud was built and
hosted by Colorado State University which consisted of 9
SUN X6270 blade servers on the same chassis sharing a
private 1 Giga-bit VLAN with dual Intel Xeon X5560-quad
core 2.8 GHz CPUs each with 24GB ram and 146GB HDDs.
The host operating system was Ubuntu Linux (2.6.35-22) 64-
bit server 10.10. VM guests ran Ubuntu Linux (2.6.31-22)
32 and 64-bit server 9.10. 8 blade servers were configured
as Eucalyptus node-controllers, and 1 blade server was
configured as the Eucalyptus cloud-controller, cluster-
controller, walrus server, and storage-controller. Eucalyptus-
based managed mode networking was configured using a
managed Ethernet switch isolating VMs on their own private
VLANs.

QEMU version 0.12.5, a Linux-based PC system
emulator, was used to provide VMs. QEMU makes use of
the KVM Linux kernel modules (version 2.6.35-22) to
achieve full virtualization of the guest operating system.
Recent enhancements to Intel/AMD x86-based CPUs
provide special CPU-extensions to support full virtualization
of guest operating systems without modification. With these
extensions device emulation overhead can be reduced to
improve performance. One limitation of full virtualization
versus XEN-based paravirtualization is that network and disk
devices must be fully emulated. XEN-based
paravirtualization requires special versions of both the host

and guest operating systems with the benefit of near-direct
physical device access [10].

B. Application Components
Table I describes the four VM image types used to

implement the components of RUSLE2's application stack.
The Model M VM hosts the model computation and web
services using Apache Tomcat. The Database D VM hosts
the spatial database which resolves latitude and longitude
coordinates to assist in parameterizing climate, soil, and
management data for RUSLE2. Postgresql was used as a
relational database and PostGIS extensions were used to
support spatial database functions [18-19]. The file server F
VM was used by the RUSLE2 model to acquire XML files
to parameterize data for model runs. NGINX [20], a
lightweight high performance web server provided access to
a library of static XML files which were on average ~5KB
each. The logging L VM provided historical tracking of
modeling activity. The codebeamer tracking facility was
used to log model activity [21]. Codebeamer provides an
extensive customizable GUI and reporting facility. A simple
JAX-RS RESTful JSON-based web service was developed
to encapsulate logging functions to decouple Codebeamer
from the RUSLE2 web service and also to provide a logging
queue to prevent logging delays from interfering with the
RUSLE2 webservice. HAProxy was used to provide round-
robin load balancing of M and D VMs. HAProxy is a
dynamically configurable very fast load balancer which
supports proxying both TCP and HTTP socket-based
network traffic [22].

TABLE I. VIRTUAL MACHINE TYPES

VM Description

M Model
64-bit Ubuntu 9.10 server w/ Apache Tomcat 6.0.20,
Wine 1.0.1, RUSLE2, Object Modeling System
(OMS 3.0)

D Database

64-bit Ubuntu 9.10 server w/ Postgresql-8.4, and
PostGIS 1.4.0-2.
Spatial database consists of soil data (1.7 million
shapes, 167 million points), management data (98
shapes, 489k points), and climate data (31k shapes, 3
million points), totaling 4.6 GB for the state of TN
and CO

F File server
64-bit Ubuntu 9.10 server w/ nginx 0.7.62 to serve
XML files which parameterize the RUSLE2 model.
57,185 XML files consisting of 305MB.

L Logger
32-bit Ubuntu 9.10 server with Codebeamer 5.5
running on Tomcat. Custom RESTful JSON-based
logging wrapper web service.

C. Component Deployments
Our application stack of 4 components can be deployed

15 possible ways across 4 physical node computers. Tables
II shows the four stack deployments we tested labeled as P1-
P4 and V1-V4 respectively. P1-P4 denotes physical stack
deployments where components were deployed on physical
machines by installing software directly on the host
operating system. V1-V4 denotes virtual stack deployments
where components were imaged and then launched as VMs
in our private Eucalyptus cloud. Eucalyptus does not
provide control where VMs are physically deployed. To test

(V1-V4) deployments placeholder VMs were launched and
terminated to force the desired VM placements as using
Eucalyptus' round-robin VM deployment scheme. We
expected the D and M components to be the most resource
intensive components motivating our interest to test their
deployment in isolation on physical nodes (P2/V2 and
P4/V4). P1/V1 tested the deployment of all components on a
single machine. P1/V1 should benefit from locality of
dependent services which should reduce dependence on
network I/O with the added cost of greater contention for
local disk and CPU resources. P3/V3 tested running each
component in isolation, allowing components the greatest
freedom to fully utilize local CPU and disk resources, at the
expense of greater network I/O requirements.

TABLE II. PHYSICAL (P) AND VIRTUAL (V) STACKS DEPLOYMENTS

 Node 1 Node 2 Node 3 Node 4

P1/V1 M D F L

P2/V2 M D F L

P3/V3 M D F L

P4/V4 M L F D

Eucalyptus 2.0 allows custom definitions for VM sizes
(small, medium, large) supporting customization of the
number of virtual CPUs, memory, and disk size allocations.
We tested a variety of VM resource allocations for our
application VMs. For some tests we over-allocated the
number of virtual CPUs far beyond the number of physical
CPUs present on the host machine. For stack deployments
with multi-tenancy this increased contention for
computational resources.

D. Testing Infrastructure
The RUSLE2 web service supports individual model

runs and ensemble runs which are groups of modeling
requests bundled together. To invoke the web service a
client sends a JSON object including parameters for
management practice, slope length, steepness, latitude, and
longitude. Model results are computed and returned as a
JSON object. Ensemble runs are processed by dividing the
set of modeling requests into individual requests which are
resent to the web service, similar to the “map” function of
MapReduce. A configurable number of worker threads
concurrently executes individual runs of the ensemble, and
upon completion results are combined (reduced) into a single
JSON response object and returned. A simple program
generated randomized ensemble tests of 25, 100, and 1000
runs. Latitude and longitude coordinates were randomly
selected within a large bounding box from the state of
Tennessee. Slope length, steepness, and the management
practice parameters were also randomized. Randomization
of latitude and longitude resulted in variable spatial query
execution times due to the variable complexity of the
polygons coordinates intersected with. To counteract the
effect of caching, before each ensemble test was run, all
application server components were stopped and restarted

and a 25-model run ensemble test was executed to warm up
the system. The warm up test was warranted after we
observed postgresql performing slowly on initial spatial
queries upon startup.

To measure performance, the RUSLE2 model and web
service code was instrumented to capture timing data for
various operations and returned in the JSON response
objects. Custom parsing programs were used to extract
timing data from the JSON objects for analysis and graphing.
Captured timing data included: “fileIO“ the time required to
load data files provided by nginx, “model” the time spent
shelling to the operating system to execute the model using
WINE, “climate/soil query” the time spent executing spatial
queries, “logging” the time spent submitting models to the
logger, “overhead” representing all operations not
specifically timed, and “total” the total time of the web
service call from start to finish. “fileIO” was a subset of the
“model” time because nginx file I/O occurred simultaneously
during model execution.

E. Application Variants
Our investigation tested two variants of RUSLE2 which

we refer to herein as the “d-bound” for the database bound
variant and the “m-bound” for the model bound variant. By
testing two variants of RUSLE2 we hoped to gain insights on
two common types of multi-tier applications, an application
bound by the database tier, and an application bound by the
middleware (model) tier. For the d-bound version of
RUSLE2 two primary spatial queries were modified to
perform a join on a nested query, while the m-bound variant
was unmodified. This modification significantly increased
demand for computational resources from the database. The
d-bound variant should require the same resources as the m-
bound plus additional processing to compute results of
several thousand additional queries making the d-bound
application more CPU bound than the m-bound variant.

V. EXPERIMENTAL RESULTS

A. Application Profiling
An application's profile refers to its processing, I/O, and

memory requirements which change over time as an
application evolves. To asses the application profiles of the
RUSLE2 variants we used the V1 stack configuration. An
identical 100-model run ensemble test was used to determine
the time distribution of model operations as shown in figure
1. For the d-bound application the “climate” and “soil”
spatial queries consumed about ~77% of “total” execution
time, while the “model” spent about ~22%, with remaining
time split between “logging” time and “overhead”.
“Logging” time was negligible because the logger queued
logging requests which then executed independently of
model execution. “FileIO” a subset of the “model” time took
approximately 3.5% of the overall time. D-bound climate
queries were generally fast compared to soil queries. Much
of the execution time reported for climate queries we
observed was time spent waiting for soil queries to complete.
For the m-bound application the model consumed ~91% of
the “total” execution time, while spatial queries accounted

for about 1%. “Overhead” was just over 8% of the “total”
time, while “FileIO” operations, a subset of “model” time,
increased to 19%. Performance for the d-bound and m-
bound application variants appeared bounded by their
respective named components D and M.

The application variants were next tuned to minimize the
100-model run ensemble test execution time. Virtual
resource allocations were determined for CPU cores,
memory size, and disk space. Application tuning included
determining an optimal number of shared database
connections for the database connections pool, and the
number of model execution (worker) threads for ensemble
runs. For each tuning step we identified ideal parameter
configurations by identifying when performance
improvements leveled off and appeared as normal variation
or when performance actually decreased.

To determine an optimal number of database connections
we tested using a D VM allocated with 6 virtual cores while
using 6 worker threads to run models. Figure 2 shows the
best performance for the d-bound application occurred when
using approximately 5 database connections, while the
number of database connections did not appear to have a
significant impact on the m-bound application. For
subsequent tests we used 5 and 8 connections for the d-
bound and m-bound applications respectively. According to
the postgresql documentation individual connections can
utilize at most only 1 CPU core leading to our assignment of
8 connections and 8 cores for the m-bound application.

For the d-bound application with 5 shared connections,
we varied the D VM's number of virtual cores to test the
impact on performance as shown in Figure 3. The best
performance was observed while allocating approximately 6
virtual cores with a slight performance degradation seen
when using additional virtual cores. Sharing 16 database
connections while increasing the number of D VM virtual
cores did not improve performance. When observing the D
VM's KVM process on the host machine, we observed with
virtual CPU allocations (>6), the D VM did not utilize more
than ~500-600% of the 8-core physical machine's CPU
capacity, where 100% represents a fully allocated CPU core.
It was unclear if this limitation was caused by postgresql or
through the use of KVM.

Figure 1. RUSLE2 application time footprint

Figure 2. V1 stack with variable database connections

Figure 3. V1 stack d-bound with variable D VM virtual CPUs

Figure 4. V1 stack with variable M VM virtual CPUs

Figure 5. V1 stack with variable worker threads

Figure 6. D-bound ensemble time with variable D VMs

Figure 4 shows the average model run time while varying
the number of virtual cores allocated to the M VM. Optimal
performance was observed using 5 or more virtual cores for
the d-bound application and 8 virtual cores for the m-bound
application. The m-bound application benefited from
additional virtual cores but suffered when cores were over-
allocated beyond the number of physical cores on the host.
Figure 5 shows the 100-model run ensemble time using 16
and 8 shared database connections for the d-bound and m-
bound applications respectively. Each worker thread
concurrently executed RUSLE2 model runs. Using 6 worker
threads appeared to be an optimal number for the d-bound
application with similar performance seen using 5 or 7
worker threads. For the m-bound application using at least 6
threads appeared optimal. For the m-bound application, we
tested using up to 100 worker threads but did not observe a
significant performance difference versus 6 threads.

Upon completion of application tuning for the V1
provisioning scheme the d-bound application required an
average of ~120 seconds to complete a 100-model run
ensemble test, and the m-bound application ~32 seconds.

B. Virtual Resource Scaling
After tuning a V1 deployment of our application variants

we next scaled the variants to fully utilize all available
resources of our private cloud to obtain optimal performance
for 100-model run ensemble tests. Additional D and M VMs
were allocated for the d-bound and m-bound applications.
Figure 6 shows the performance of the d-bound application
when we allocated multiple D VMs with each running in
isolation on a separate physical machine. For the m-bound
application allocating additional D VMs was not tested
because we were unable to fully saturate a single D VM. We
tested the performance using 5 shared database connections
and also database connections equal to the number of D VMs
multiplied by 5. Increasing the number of database
connections was required to ensure that the tomcat server
would have at least one connection to each postgresql
database. Scaling the number of D VMs was shown to result
in a favorable performance improvement until approximately
3 to 4 D VMs. Beyond this performance improvements
could not be differentiated as the results appeared similar to
variance.

Figure 7. Ensemble runtime with variable worker threads

Figure 8. Ensemble runtime with variable M VMs

Figure 9. M-bound with variable M VMs and worker threads

Figure 10. M-bound with 16 M VMs variable worker threads

To move past the d-bound application bottleneck the
number of worker threads was increased as shown in figure
7. For the d-bound application we observed a bottleneck
when 40 shared database connections and 24 concurrent
worker threads were used. Increasing beyond 24 worker
threads appeared to degrade performance. For the m-bound
application only 1 D VM is used for tests in figure 7, but a
similar performance result is seen when exceeding 24 worker
threads. To realize further performance improvements both
applications required us to next increase the number of M
VMs.

Figure 8 shows the speed improvement realized by
scaling the number of M VMs. While scaling the number of
M VMs, a fixed number of 24 and 8 worker threads were
used for the d-bound and m-bound applications respectively.
For the d-bound application beyond allocating 3 M VMs
performance gains appeared minimal. At 7 M VMs we
observed slight performance degradation. At the completion
of d-bound application scaling the 100-model run ensemble
test executed in 21.8 seconds, 5.5x faster than before VM
scaling using {8 D, 6 M, 1 F, 1 L} VMs with 24 worker
threads and 40 shared database connections per M VM.

For the m-bound application a bottleneck was
encountered after allocating 4 M VMs using 8 worker
threads and 8 shared database connections. To surpass the
bottleneck the number of worker threads was scaled. For
each M VM, an additional 8 worker threads were allocated
starting with 8 worker threads for a single M VM. Figure 9
shows the 100-model run ensemble time while scaling to 16
M VMs with 128 worker threads. The first 8 M VMs were
deployed on separate physical machines. Beyond this we
lacked additional physical hosts to run every M VMs in
isolation so multiple M VMs were deployed on the physical
hosts.

A series of 1000-model run ensemble tests were made to
assist tuning the optimal number of worker threads for the 16
M VM deployment shown in figure 10. Optimal ensemble
test times were observed using 48 worker threads. At the
conclusion of m-bound application scaling the 100-model
run ensemble test executed in 6.7 seconds, 4.8x faster than
before M VM scaling using {16 M, 1 D, 1 F, 1 L} VMs with
48 worker threads and 8 shared database connections per M
VM.

C. Provisioning Variation
We tested performance using the physical (P1-P4) and

virtual (V1-V4) stack provisioning schemes identified in
table II. Timing results for the 100-model run ensemble tests
for each stack provisioning for both application variants are
shown in Table III. To determine if the stack provisioning
schemes performed differently from each other we checked
if schemes varied more than 1 standard deviation from each
other. For all tests we observed the slowest performance
when all application components were co-located on the
same physical machine (P1/V1), an expected result. For the
virtual tests we observed the best performance when all
components ran in physical isolation (V3), also an expected
resulted. For the m-bound application we observed slower

performance when the M VM shared physical resources
(V1/V4) with other components and for the d-bound when
the D VM shared physical resources (V1/V2). The impact of
provisioning variation on application performance appeared
dependent on characteristics of the application profile. Best
performance required the most computational and I/O
intensive components to be run in physical isolation.

TABLE III. M-BOUND VS D-BOUND PROVISIONING VARIATION

 M-Bound D-Bound

 Total (sec) Rank Total (sec) Rank

P1/V1 16.15 / 33.65 4 110.21 / 123.61 4
P2/V2 15.89 / 30.99 2 99.08 / 123.43 '1 / 3
P3/V3 15.59 / 29.50 1 103.80 / 115.98 '2 / 1
P4/V4 16.11 / 33.65 3 104.17 / 116.05 '3 / 2

D. Virtualization Overhead
To investigate the virtualization overhead resulting from

using KVM performance the P1 and V1 provisioning
schemes were compared by executing 1000-model runs. The
V1 d-bound and m-bound applications used 5 and 8 virtual
cores respectively for the M VM. Both applications used 6
virtual cores for the D VM and 5 virtual cores for the F and L
VMs. For both physical and virtual deployments the d-
bound application used 6 worker threads and 5 shared
database connections, while the m-bound application used 8
worker threads and 8 shared database connections.

TABLE IV. P1 VS V1 KVM-VIRTUALIZATION OVERHEAD

 D-bound M-bound

 Virt. O/H
P1

 avg (ms)
V1

avg (ms) Virt. O/H
P1

avg (ms)
V1

avg (ms)

fileIO 319.70% 55.77 234.06 463.54% 56.57 318.79
model 54.50% 968.47 1496.24 100.16% 815.56 1632.46
climate query -11.41% 691.86 612.95 404.54% 1.28 6.45
soil query 3.25% 4371.20 4513.39 12.04% 11.84 13.26
logging 1360.69% 0.32 4.72 2680.58% 0.35 9.59
overhead 395.14% 14.30 70.81 740.02% 15.54 130.54
total 10.78% 6046.16 6698.10 112.22% 844.56 1792.30

Table IV shows timing of the physical versus virtual
stacks. The d-bound application's virtualization overhead for
the total system was quite low at just 10.78%, while the m-
bound application was 112.22%. When examining the
application footprints of the m-bound and d-bound
applications, the m-bound application appears more I/O
bound with nearly 20% (~319 ms) of the total model
execution time spent in “fileIO” versus just 3.5% (~234 ms)
for the d-bound application. Similarly “overhead” which
consisted primarily of writing logging files was 7.3% (~131
ms) of the total model execution time for the m-bound
application, but only 1.1% (~71 ms) for the d-bound
application. For the m-bound application I/O operations
were not only a greater percentage of the overall application
footprint, but the operations themselves took longer to
perform. We suspect this result was due to greater

contention for CPU and I/O resources because of the higher
density of I/O operations for the m-bound application. This
effect was barely seen with the P1 provisioning scheme
because the physical machines performed direct device I/O
and did not experience by additional resource contention
from device emulation. The d-bound application was less
impacted by I/O virtualization overhead because most of the
execution time 77% (~5053 ms) was spent performing CPU-
bound nested database queries. Our results demonstrate that
application profiles which detail how applications utilize
resources (CPU, memory, I/O) are helpful in determining
application performance when virtualized.

VI. CONCLUSIONS
Two variants of the RUSLE2 erosion model serving as

surrogates for common multi-tier application architectures
were tested to investigate application migration to IaaS
clouds. While scaling both application variants, different
bottlenecks were encountered based on each variant's
application profile. Surmounting these bottlenecks required
custom tuning of application parameters and/or virtual
resource allocations. Simply increasing the number of VMs
did not lead to optimal application throughput. Application
scaling required understanding the application profile as well
as dependencies among the application components.

Provisioning variation impacted performance based on
application profiles. Best performance was observed when
the most CPU and I/O intensive components were isolated
on separate physical hardware whereas performance
degradation occurred when too many resource intensive
components were co-located highlighting the importance of
considering an application's profile for VM placement across
physical machines.

Virtualization overhead varied based on the profile of the
application being virtualized. The d-bound application,
which was more CPU-bound, appeared less impacted by
virtualization overhead (~11% overhead) whereas the m-
bound application, which appeared more I/O bound, showed
a greater performance degradation due to virtualization
(~112% overhead). As file and network device performance
varies with different virtualization approaches a future
investigation is planned to test other types of virtualization
including XEN-based full and para-virtualization to better
understand implications of hosting multi-tier applications
using different types of virtualization.

In conclusion, application scaling, provisioning variation
and virtualization overhead all appear impacted by an
application's profile. We have explored how an application's
profile relates to interactions between its constituent
components and the corresponding implications for
migration. Once an application's profile is known, this can
guide the efficient deployment of the application to IaaS
clouds while accounting for scaling and throughput
requirements.

REFERENCES
[1] A. Kivity, Y. Kamay, D. Laor, U. Lublin, A. Liguori, “kvm: the

Linux Virtual Machine Monitor,” Proc. 2007 Ottawa Linux

Symposium (OLS 2007), Ottawa, Canada, June 27-30, 2007, pp. 225-
230.

[2] M. Rehman, M. Sakr, “Initial Findings for Provisioning Variation in
Cloud Computing,” Proc. of the IEEE 2nd Intl. Conf. on Cloud
Computing Technology and Science (CloudCom '10), Indianapolis,
IN, USA, Nov 30 – Dec 3, 2010, pp. 473-479.

[3] J. Schad, J. Dittrich, J. Quiane-Ruiz, “Runtime Measurements in the
Cloud: Observing, Analyzing, and Reducing Variance,” Proc. of 36th
Intl. Conf. on Very Large DataBases (VLDB 2010), Singapore,
China, Sept 13-17, 2010, pp. 460-471.

[4] M. Zaharia, A. Konwinski, A. Joesph, R. Katz, I. Stoica, “Improving
MapReduce Performance in Heterogeneous Environments,” Proc. 8th
USENIX Conf. Operating systems design and implementation (OSDI
'08), San Diego, CA, USA, Dec 8-10, 2008, pp. 29-42.

[5] M. Vouk, “Cloud Computing – Issues, Research, and
Implementations,” Proc. 30th Intl. Conf. Information Technology
Interfaces (ITI 2008), Cavtat, Croatia, June 23-26, 2008, pp. 31-40.

[6] T. Chieu, A. Mohindra, A. Karve, A. Segal, “Dynamic Scaling of
Web Applications in a Virtualized Cloud Computing Environment,”
Proc. IEEE Conf. e-Business Engineering (ICEBE 2009), Macau,
China, October 21-23, 2009, pp. 281-286.

[7] W. Iqbal, M. Dailey, D. Carrera, P. Janecek, “SLA-Driven Automatic
Bottleneck Detection and Resolution for Read Intensive Multi-tier
Applications Hosted on a Cloud,” Proc. 5th Intl. Conf. on Advances
in Grid and Pervasive Computing (GPC 2010), Hualien, Taiwan, May
10-13, 2010, pp. 37-46.

[8] H. Liu, S. Wee, “Web Server Farm in the Cloud: Performance
Evaluation and Dynamic Architecture,” Proc. IEEE 1st Intl. Conf. on
Cloud Computing Technology and Science (CloudCom '09), Beijing,
China, Dec 1-4, 2009, 12p.

[9] S. Wee, H. Liu, “Client-side Load Balancer using Cloud,” in Proc.
25th Symposium on Applied Computing (SAC 2010), Sierre,
Switzerland, March 22-26, 2010, pp. 399-405.

[10] F. Camargos, G. Girard, B. Ligneris, “Virtualization of Linux
servers,” Proc. 2008 Linux Syposium, Ottawa, Ontario, Canada, July
23-26, 2008, pp. 63-76.

[11] D. Armstrong, K. Djemame, “Performance Issues In Clouds: An
Evaluation of Virtual Image Propagation and I/O Paravirtualization,”
The Computer Journal, June 2011, vol. 54, iss. 6, pp. 836-849.

[12] United States Department of Agriculture – Agricultural Research
Service (USDA-ARS), Revised Universal Soil Loss Equation Version
2 (RUSLE2),

[13] L. Ahuja, J. Ascough II, and O. David, “Developing natural resource
modeling using the object modeling system: feasibility and
challenges,” Advances in Geosciences, vol. 4, 2005, pp. 29-36.

http://www.ars.usda.gov/SP2UserFiles/Place/
64080510/RUSLE/RUSLE2_Science_Doc.pdf

[14] O. David, J. Ascough II, G. Leavesley, L. Ahuja, “Rethinking
modeling framework design: Object Modeling System 3.0,” Proc.
iEMSs 2010 Intl. Congress on Environmental Modeling and
Software, Ottawa, Canada, July 5-8, 2010, 8 p.

[15] WineHQ – Run Windows applications on Linux, BSD, Solaris, and
Mac OS X, http://www.winehq.org/

[16] Apache Tomcat – Welcome, 2011, http://tomcat.apache.org/
[17] D. Nurmi et al., “The Eucalyptus Open-source Cloud-computing

System,” Proc. IEEE Intl. Symposium on Cluster Computing and the
Grid (CCGRID 2009), Shanghai, China, May 18-21, 8p.

[18] PostGIS, 2011, http://postgis.refractions.net/
[19] PostgreSQL: The world's most advanced open source

database, http://www.postgresql.org/
[20] nginx news, 2011, http://nginx.org/
[21] Welcome to CodeBeamer, 2011, https://codebeamer.com/ cb/user/
[22] HAProxy – The Reliable, High Performance TCP/HTTP Load

Balancer, http://haproxy.1wt.eu/

http://www.ars.usda.gov/SP2UserFiles/Place/64080510�
http://www.ars.usda.gov/SP2UserFiles/Place/64080510�
http://www.ars.usda.gov/SP2UserFiles/Place/64080510�
http://www.ars.usda.gov/SP2UserFiles/Place/64080510/RUSLE/RUSLE2_Science_Doc.pdf�
http://www.winehq.org/�
http://tomcat.apache.org/�
http://postgis.refractions.net/�
http://www.postgresql.org/�

	University of Washington Tacoma
	UW Tacoma Digital Commons
	2011

	Migration of Multi-Tier Applications to Infrastructure-As-A-Service Clouds: An Investigation Using Kernel-Based Virtual Machines
	Wes Lloyd
	Shrideep Pallickara
	Olaf David
	Jim Lyon
	Mazdak Arabi
	See next page for additional authors
	Recommended Citation
	Authors

	I. Introduction
	1) How can multi-tier client/server applications be migrated to Infrastructure-as-a-Service cloud environments, and what factors must be accounted for while deploying and then scaling applications for optimal throughput?
	2) What is the impact on application performance as a result of provisioning variation? Does multi-tenancy, having multiple application VMs co-located on a single physical node machine, impact performance?
	3) What overheads are incurred while using Kernel-based virtual machines (KVM) for hosting components of a multi-tier application?

	II. Related Work
	III. Paper Contributions
	IV. Experimental Investigation
	A. Experimental Setup
	B. Application Components
	C. Component Deployments
	D. Testing Infrastructure
	E. Application Variants

	V. Experimental Results
	A. Application Profiling
	B. Virtual Resource Scaling
	C. Provisioning Variation
	D. Virtualization Overhead

	VI. Conclusions
	References

