
University of Washington Tacoma
UW Tacoma Digital Commons

School of Engineering and Technology Publications School of Engineering and Technology

2002

Effectiveness of Elicitation Techniques in
Distributed Requirements Engineering
Wesley James Lloyd
University of Washington Tacoma, wlloyd@uw.edu

Mary Beth Rosson

James D. Arthur

Follow this and additional works at: https://digitalcommons.tacoma.uw.edu/tech_pub

This Conference Proceeding is brought to you for free and open access by the School of Engineering and Technology at UW Tacoma Digital
Commons. It has been accepted for inclusion in School of Engineering and Technology Publications by an authorized administrator of UW Tacoma
Digital Commons.

Recommended Citation
Lloyd, Wesley James; Rosson, Mary Beth; and Arthur, James D., "Effectiveness of Elicitation Techniques in Distributed Requirements
Engineering" (2002). School of Engineering and Technology Publications. 23.
https://digitalcommons.tacoma.uw.edu/tech_pub/23

https://digitalcommons.tacoma.uw.edu?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/tech_pub?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/institute_tech?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/tech_pub?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/tech_pub/23?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages


Effectiveness of Elicitation Techniques in Distributed Requirements Engineering

Wesley James Lloyd
Hewlett Packard
wlloyd@acm.org

Mary Beth Rosson
Virginia Tech

rosson@cs.vt.edu

James D. Arthur
Virginia Tech

arthur@cs.vt.edu

Abstract
Software development teams are often geographically
distributed from their customers and end users. This
creates significant communication and coordination
challenges that impact the effectiveness of requirements
engineering. Travel costs, and the local availability of
quality technical staff increase the demand for effective
distributed software development teams.

This research reports an empirical study of how
groupware can be used to aid distributed requirements
engineering for a software development project. Six
groups of seven to nine members were formed and divided
into separate remote groups of customers and engineers.
The engineers conducted a requirements analysis and
produced a software requirements specification (SRS)
document through distributed interaction with the remote
customers.

We present results and conclusions from the research
including: an analysis of factors that effected the quality
of the Software Requirements Specification document
written at the conclusion of the requirements process and
the effectiveness of requirements elicitation techniques
which were used in a distributed setting for requirements
gathering.

1. Introduction

Software quality is often reflective of the quality and
maturity of the software development process of the
organization. Pedagogical software process models such
as the Waterfall, Spiral, and rapid prototyping all include
Requirements Analysis activities. It is generally accepted
that the ultimate quality of the delivered software depends
on the requirements upon which the system has been built.
[1] [7] Studies performed at many companies have
measured and assigned costs to correcting defects in
software discovered at various phases of the project
lifecycle. Generally the later in the software lifecycle a
defect is discovered the more expensive it is to rectify.

Research suggests that correcting software defects can
require nearly two hundred times the effort if the
correction is implemented in the maintenance phase versus
the requirements specification phase of a software
lifecycle. [6]

Software development organizations are often
geographically distributed from their customers and end
users. High travel costs, and the local availability of
skilled technical staff increase the demand for distributed
software development efforts. Frequently face-to-face
meetings with end-users are not realistic.

This paper reports the results of an exploratory
empirical study conducted to study the effectiveness of
requirements engineering in a distributed setting. Forty-
six participants role-played as either customers or
engineers to form six separate groups in the project. At
the conclusion of the project, the participants who role-
played as software engineers wrote a Software
Requirements Specification (SRS) document using only
the knowledge gained from their remote collaboration with
their customer.

This empirical study had three primary goals. The first
goal was to identify what factors led groups to write high
quality SRS documents. A second goal was to evaluate
the effectiveness of the groupware (software for
collaboration) used to enable distributed requirements
engineering. And finally, a third goal was to assess the
effectiveness of various requirements elicitation
techniques when used in the distributed mode. This paper
focuses on the first and third goals of the study, presenting
observations, results and conclusions.

2. Background

Distributed software development projects have
become practical because of technological improvements
in communications structure, bandwidth and performance.
Global business ventures, strategic partnerships, and joint



ventures, all share a need in supporting distributed
software development efforts. [14]

Organizational factors contribute to the need for
distributed software development. Many reasons for
conducting distributed software development have been
identified including: project members that are unwilling to
travel, lack of skilled workers in a geographical area, high
travel and relocations costs, and the physical location of
specialized hardware. [3]

The many factors motivating distributed software
development do not automatically constitute gains in
productivity and quality. Microsoft has long valued the
ability for software engineers to meet informally face-to-
face to resolve development problems. [3] However
software engineering literature has identified advantages
for distributed work. [2] [8] [11] [12]

The use of email has been identified to be a rich
communications tool for supporting telecommuting and
asynchronous collaboration. Some notable advantages of
email include: broadcasting capability, management of
communication, access to information resources, low
communication cost, file transfers, and temporal and
spatial flexibility. [2]

In [8] a software design experiment was conducted to
compare the quality and creativity achieved using two
different meeting environments. Forty-one groups carried
out a design process using either distributed asynchronous
meetings or synchronous face-to-face meetings. The
results suggested that the distributed asynchronous groups
produced more creative and possibly higher quality
software designs than the face-to-face groups. The study
attributed the better performance of distributed groups to
the benefits available with using computer support tools to
mediate the process.

At Fujitsu corporation a study found that the
development cycle time was reduced 75 percent by
applying the use of concurrent software development
methods. When team members were distributed in
different locations, software development could proceed
around the clock across time zones.

A large number of requirements elicitation techniques
exist which help requirements engineers gather
requirements from customers and end-users. [5] Some of
these requirements elicitation techniques may work very
well in a distributed setting, where others may fail due to
the limited informational bandwidth of distributed
interaction. For example, studies of computer-mediated
communication have documented many of the problems
that arise when less "rich" communication media (e.g., text
versus videoconferencing) are used to support remote
interaction. Lower-bandwidth channels seem to be

particularly problematic for interaction that involves
negotiation or persuasion [17]. This in turn suggests that
elicitation techniques that involve a back-and-forth
negotiation may be more difficult to enact in a distributed
setting. This exploratory study seeks to identify which
requirements elicitation techniques work best in the
distributed mode. This knowledge can lead to ideas about
what would constitute a distributed requirements
engineering process.

The literature suggests that there is motivation for
desiring to perform distributed requirements engineering.
Some studies have identified performance gains with a
distributed work model. Research issues and questions
arise which lead to the desire for experiment. Next the
design of this empirical study is presented, followed by a
presentation of observations and results.

3. Empirical Study of Distributed
Requirements Engineering

This empirical study simulated a distributed
requirements engineering project. Groups of computer
science graduate students from Virginia Tech role-played
as participants in a requirements engineering effort. All
group interaction in the study was distributed, and was
supported by a set of groupware tools that enabled both
synchronous and asynchronous collaboration. The
customer and engineer participants never met face-to-face
to perform any negotiations or discussion related to the
project. The intent was to observe the process and
effectiveness of gathering and refining requirements in a
distributed setting. This was an exploratory study in which
we sought to learn as much as possible about techniques,
strategies, and outcomes of distributed requirements
engineering.

3.1 Project Overview

Students from a graduate Software Engineering course
played the role of the software engineers. The engineers’
customers were students from a second graduate class on
Computer Supported Cooperative Work (CSCW). Each
customer was given a role description that described his or
her role in a hypothetical company (e.g., vice president,
technical staff, administrative staff); each hypothetical
company was represented by a group of 3-5 employees.
These groups selected a name for their company and
effectively acted on behalf of that company for the
duration of the experiment. Each company had the same
general description, “a multi-discipline engineering firm



with approximately 100 employees”. Each firm was
described as employing engineers, project managers,
secretaries, accountants, and administrative personnel,
which were housed in a modest 2-story office building.

Requirements engineering was supported using a set of
collaborative tools. These tools are referred to as the
groupware tools. The tools consisted of: Centra
Symposium [13], which supports real time virtual
meetings, MOOsburg [15], to facilitate file sharing and
informal impromptu meetings, and email, for file sharing
and asynchronous discussions.

The software system specified was a personal planner
and scheduling system for the virtual company. The
virtual company was described to have a fixed number of
meeting rooms and audio/visual equipment in their two-
story office building. The desire was to develop a
software system to help schedule shared company
resources as well to aid the personal planning of all
company employees. Being a small company both
manpower and physical resources are limited, and an
automated scheduling system has been identified as a way
to efficiently optimize finite resources to increase the
productivity of the company. Additional details can be
found in [16].

A meeting scheduler system has been established as a
benchmark problem for research in requirements
engineering. [9] There is an existing two-page
requirements document describing the scheduling
problem. [10] Determining and negotiating requirements
for a meeting scheduling system is challenging and
problematic. This problem has enough complexity to
make it a useful sample problem, raising issues similar to
real world problems. The problem also requires no special
domain knowledge of persons playing the customer role.
We could not assume our student/customers would have
special knowledge of the requirements for any particular
software system, so the scheduling system seemed to be an
ideal problem for this empirical study.

We used Lamsweede’s two-page requirements
document describing the scheduling problem [10] as a
basis for our more elaborated problem statement that
included details about customer roles and specific
requirements. Our extension of the original specification
also requested that the teams develop a state-of-the-art
technological solution. Customer roles were defined,
including hypothetical conflicts between customers over
system requirements (e.g., secretaries wanted to maintain
control over scheduling versus engineers who wanted
extensive automation, see [16]). The problem
specification was given to the customer groups but kept

from the software engineers for the duration of the
experiment.

Each software engineering group conducted a
distributed requirements analysis to develop and write a
Software Requirements Specification (SRS) document that
specified the requirements of the corporate scheduling
system. A number of constraints were placed on the
engineers to help structure the project.

Each requirements engineering group conducted a
series of four planned virtual meetings with the customer
groups. Each meeting was allowed to take up to ninety
minutes. The software engineers and customers met using
Centra Symposium, a point-to-point audio conferencing
and meeting support tool [13]. (Video conferencing was
not used in this study.) The software engineers needed to
plan an effective agenda to make optimal use of the limited
time in virtual meetings.

The requirements engineers were also allowed to
conduct additional meetings using MOOsburg, a place-
based collaborative environment [15]. MOOsburg does
not support point-to-point audio conferencing, so these
meetings were limited to text chat or document exchange.
Group email distribution lists were also available to
complement the four real-time meetings. Open issues or
questions could be clarified by sending email using these
group email aliases.

To assist the software engineers in requirements
analysis, process guidelines were provided for planning
the activities of each virtual meeting. The set of guidelines
and requirements are shown in the table below. The list
provided a benchmark so software engineers could
understand the types of activities that should occur at
different points within the requirements engineering
lifecycle. A general requirements engineering process was
also presented that could be used if desired during the
project.

Virtual Meeting 1 Capturing User Requirements

Virtual Meeting 2 Analysis, Prototyping, Modeling

Virtual Meeting 3 Analysis, Productivity

Virtual Meeting 4 Walkthrough verification of the specific

Table 3-1 - Virtual Meeting Activities

3.2. Requirements Elicitation Techniques

One of the research goals of this study was to analyze
how well requirements elicitation techniques work in a



distributed setting. We hypothesize that some
requirements elicitation methods are better than others for
distributed requirements engineering. Thus, the software
engineering participants in the study were introduced to a
number of popular requirements elicitation methods as
part of their participant training for the experiment. This
enabled us to study the use and effectiveness of the various
techniques as part of the overall process.

The requirements engineers were not required to use
any particular elicitation techniques for requirements
engineering. They were trained on a variety of techniques
and were then free to select techniques most appropriate
for the situation. The participants’ experience with
requirements engineering and their use and reaction to
individual techniques was then assessed by survey. A few
of the techniques were particularly emphasized as part of
the instruction in the software engineering course.

The following requirements elicitation techniques from
[5] were presented to the participants and evaluated in the
study:

• Question and Answer Method

• Customer Interviews

• Brainstorming and Idea Reduction

• Storyboards

• Prototyping

• Questionnaires

• Use Cases

• Requirements Management.

3.3. Meeting Facilities and Software

Since this empirical study studied distributed work, it
was expected that participants might desire to work on the
project from a variety of locations. MOOsburg was
provided to support distributed work outside of planned
meetings. Participants were able to use MOOsburg from
any computer with an internet web browser having the
proper plug in. MOOsburg was intended to support both
planned and impromptu synchronous and asynchronous
meetings throughout the project. Participants could log on
to MOOsburg from their home computer as needed for
collaborative work.

Use of the virtual meeting system Centra Symposium
was restricted to on-campus computer labs during assigned
meeting times. Although there were no technical issues
preventing students from accessing the software from
remote locations, they were required to use the assigned
computer labs for all virtual meetings. This allowed for a

controlled environment and for easy observation of the
participants. The software engineers met in a large
computer lab with approximately thirty networked
computers on the third floor of the building. The
customers met in a small computer lab that was located on
the first floor of the same building. Observations were
made from both sides throughout the experiment. Due to
the physical layout of the building the customer and
engineering participants would typically use different
doors to enter and exit the building. This reduced the
likelihood of them encountering each other.

4. Process Assessment and Results

In order to assess the effectiveness of distributed
requirements engineering in this study a combination of
survey and observational methods were used. After the
software engineering groups had produced their software
requirements specification (SRS) documents, a set of
metrics was applied to assess document quality.
Correlations between these quality measures and the
survey and observational data were examined to
investigate the effectiveness of the distributed
requirements engineering processes used.

4.1. Evaluation Methods

The empirical study used surveys to determine the
software and requirements engineering experience level of
participants. Survey data and observations were also
collected at each planned virtual meeting. Meeting
sessions were recorded. At the conclusion of the project,
participants completed an extensive online survey
consisting of 89 questions. Each project group created a
collaboration space in MOOsburg to share documents and
to act as a virtual place for impromptu meetings. These
group spaces were examined thoroughly and artifacts were
archived. All email communication between customers
and software engineers was monitored and the messages
were examined (for specific details about evaluation
methods mentioned above see [16]).

4.2. Assessing SRS Document Quality

Four different metrics were applied to evaluate the
overall quality of the SRS documents. Each metric
produced a positive decimal value from 0 to 1. An equally
weighted average of all the metrics taken together
produced a numeric result that reflects the overall quality



of the SRS documents. For extensive detail about the
metrics used see [16].

• SRS Document Grade

The course professor generated the SRS
Document grade by combining the results from a
qualitative student assessment and the professor’s
qualitative impression of the SRS document
quality.

• Measurement of Requirements Evolution

All requirements identified were classified as
either Original (O), Original with Evolution (OE),
Evolved (E), or Unclassifiable (U). Documents
with the most requirements that were OE or E
were considered to exhibit a high degree of
requirements evolution. One challenge with
conducting requirements elicitation is
determining when all of the requirements have
been identified [5]. It is expected that mature
SRS documents should exhibit a higher quantity
of evolved requirements. Herela states in [5] that
requirements are a negotiated product generated
through a collaborative requirements process.
Having an elaborated, detailed and rich SRS
document (“product”) suggests that more rich
negotiation ensued in the process producing the
SRS document, than in groups, which produced
lower quality documents.

• Requirement Errors

Each Requirement in the SRS documents was
identified and classified as either defect free,
ambiguous, incomplete, inconsistent, not
traceable, or not verifiable. The metric value was
then calculated based on the percentage of defect
free requirements compared to requirements with
defects.

• Original Requirements Supported

There were seventeen original requirements
provided to the customers at the start of the study.
This metric was based on the percentage of the
original requirements supported in the final SRS
document.

4.3. Factors Influencing SRS Quality

Based on the application of the metrics described above
performance scores were calculated as percentages for
each of the six groups in the study. The groups were then
classified as either High Performance or Low
Performance. Results were as follows:

High Performance Groups Reduced Performance Groups

Group 1 79.34% Group 4 69.11 %

Group 2 77.32% Group 6 66.85 %

Group 3 76.44%

Group 5 75.96 %

Table 4-1 - Group Performance Scores

Requirements engineers were asked about their
perception of customer participation. For the survey a
rating scale was used to rate the quality of customer
participation. A weak positive trend was seen between
ratings of customer participation and overall SRS quality.
Requirements engineers were asked “What factors made
this simulation seem unrealistic?” The two groups
classified as reduced performers tended to complain more
often (56% of the group members) about customers not
participating enough in the requirements process, where
groups classified as higher performers complained about
customer participation much less (12% of the group
members).

Informally, we observed that some of the software
engineers became frustrated with the customers during the
study. They expected the customers to explicitly provide
the requirements to them in a ready-to-use form. This
coincides with the naïve view that requirements are
preexisting “immutable facts”, and that the process of
requirements analysis should be a one-way transfer of
information from the customers to the engineers. [4]

Requirements engineering experience is an additional
factor that one would expect to impact SRS quality. We
discovered a rather weak but positive relationship between
a group’s average requirements engineering experience
and the quality of their’ SRS documents (r[df=4]=.56,
NS). (Note that this study included only six groups,
making the power of our group-based analyses rather
weak. However, this study was exploratory in nature, so
even though many group-based correlations are not
statistically significant, we report them in the interest of
stimulating further work.)

After the conclusion of each virtual meeting the
software engineering team members rated the contribution
and participation of their peers for both the virtual meeting
and the project related work leading up to the meeting. A
value was calculated for the average perceived peer
participation per group (APPPG). This value described
the overall impression of the participation that each team
thought they were putting forth into the project. A weak



positive relationship was seen between overall SRS quality
and APPPG (r[df=4]=.60, NS).

A marginally significant negative relationship was
observed between requirements elicitation technique
effectiveness (RETE) and overall SRS quality (r[df=4]=-
.74, p<.09). RETE was the calculated average
effectiveness score for all requirements elicitation
methods. This correlation implies that groups who
produced high quality documents tended to report that
elicitation methods were ineffective in general. Closer
investigation suggests that this relationship is largely due
to perceived value of Prototyping and Questionnaires.

In Summary, in this distributed requirements
engineering experiment, groups appeared to produce
higher quality SRS documents if they reported having
more experience with requirements engineering. Groups
who perceived their teammates as contributing to the
group seemed to produce higher quality SRS documents.
Groups produced lower quality SRS documents if they
used questionnaires as an elicitation technique (an effect
explained further in section 4.4).

4.4. Effectiveness of Requirements Elicitation
Techniques

One goal of this empirical study was to identify which
requirements elicitation techniques are most effective
when used in distributed requirements engineering.
Through survey we found that the study participants had
varying degrees of experience using requirements
elicitation techniques. Ultimately the selection of
techniques to use was influenced by technique experience
and instruction in the course.

By the nature of their inherit characteristics, some
elicitation techniques may be more well suited for use in a
distributed setting, while others may function poorly in the
distributed mode. We tabulated the average perceived
effectiveness ratings for each requirements elicitation
technique introduced to the software engineers. A five
point scale was used, with 5 corresponding to “outstanding
effectiveness” and 1 corresponding to “no effectiveness”.
The graph of results appears at the top of the next column.

As mentioned in the previous section there was a
negative relationship between requirements elicitation
technique effectiveness (RETE) and overall SRS quality
(r[df=4]=-.74, p<.09). However, an investigation of the
individual methods ratings reveals that only Prototyping
(r[df=4]=-.70, p<.12) and Questionnaires (r[df=4]=-.56,
ns) were negatively related to overall SRS quality.

Figure 4-1 –Elicitation Method Effectiveness

The ratings regarding Prototyping are problematic
because the requirements engineers in this study did not
use this method. They used a lower-fidelity technique
known as storyboarding. Because the software
engineering participants did not actually build prototypes,
it is not clear how to interpret their assessment of this
elicitation technique’s effectiveness (e.g., it may simply
reflect that they chose not to use it).

In contrast, study participants did employ
Questionnaires at times. Questionnaires are an
asynchronous elicitation technique, for instance a written
lists of questions given to end users to obtain information
about system requirements. In this experiment such
questions were typically delivered and answered by email,
or posted to a group’s collaboration space in MOOsburg.
For the use of questionnaires there was a trend between the
rated effectiveness of questionnaires and the level of
customer participation outside of the scheduled meetings.
The engineers tended to see questionnaires as a better
elicitation technique when they felt that their customers
had a high level of participation outside of the virtual
meetings (r[df=24]=.30, p<.14). (Of course, this could
simply reflect that customers were more likely to
participate when questionnaires were used.)

As reported above, Questionnaires tended to be viewed
as less effective for the groups with high quality SRS
documents. This may mean that the lower-performing
groups may have relied on asynchronous elicitation
techniques more heavily. For example, there was a weak
negative relationship between the degree to which email
was used versus overall SRS quality (r[df=4]=-.64, p<.17).

These relationships between asynchronous techniques
and overall SRS quality raise several interesting questions:

Requirements Elicitation Method Effectiveness

4.5

3.2
3.8 3.5

1.6
2.7

4.3
3.7

0
1
2
3
4
5
6

Q
A

M
e

th
o

d

C
u

st
o

m
e

r
In

te
rv

ie
w

s

B
ra

in
st

o
rm

in
g

S
to

ry
b

oa
rd

s

P
ro

to
ty

pi
n

g

Q
ue

st
io

nn
a

ir
es

U
se

C
a

se
s

R
e

qu
ir

e
m

e
n

ts
M

a
n

ag
e

m
e

n
t

E
ffe

ct
iv

en
es

s



Was the interaction available in the planned virtual
meetings insufficient for the lower-performing groups?
Were email questionnaires and asynchronous work needed
as a supplement to real-time communication? The data
suggests that groups producing high quality SRS
documents tended to avoid using email and asynchronous
methods for requirements elicitation. Perhaps groups
using the asynchronous techniques were doing so because
they were failing to obtain the necessary information from
the scheduled meetings (e.g., perhaps they prepared more
poorly and obtained poorer quality results). As mentioned
before, lower performance groups had more negative
comments with respect to perceived customer
participation.

In contrast, there is a positive correlation between the
perceived effectiveness of the Question and Answer
method and reported customer participation (r[df=24]=.41,
p <.05). Question and Answer is an ad hoc elicitation
technique where the engineers ask the customer/end user
questions and the path of dialogue is then allowed to vary
based on user feedback and participation. Software
engineers’ ratings of this technique were higher when they
also reported active participation by the customers in the
meetings.

In summary the Question and Answer method, Use
Cases, Brainstorming, and Requirements Management
were the reported as the most effective requirements
elicitation techniques in the experiment. The impact of
specific requirements elicitation techniques on overall SRS
quality is inconclusive. There is some suggestion that
synchronous collaboration in the requirements process in
this study was possibly more effective than asynchronous
collaboration.

5. Conclusions

The results from this study suggest that distributed
requirements engineering is more effective when
stakeholders, in our case customers, participate actively in
synchronous activities of the requirements process. The
richness of the synchronous collaboration in this study that
was supported with voice conferencing and additional
tools seems to have delivered higher informational
bandwidth than the asynchronous tools email and
MOOsburg.

Groups who obtained adequate requirements
information from the planned virtual sessions had better
success writing high quality SRS documents. Their
processes captured greater numbers of the original
requirements, exhibited more requirements evolution in

the SRS document, produced fewer errors in the SRS, and
consequently received better SRS grades.

It may be that the open-ended and loosely specified
nature of the problem in this study favored the use of
synchronous collaboration. If the initial fixed set of
requirements had been more detailed, asynchronous
communication might have been sufficient for the
requirements gathering. But in the real world, when are
software requirements fixed? What if the customers were
not participating actively outside of virtual meetings
simply because they were not required to? Attendance at
planned meetings was mandatory but there was no strict
enforcement of participation outside of meetings. Is this a
similar problem with real projects? Busy customers may
find it easy to ignore or postpone responding to requests
for information from email or other sources.

6. Future Work

Further empirical studies such as reported here will
serve to expose additional information about the problems
and strategies of distributed requirements analysis. With
only six groups, our observations and conclusions about
document quality must be seen as relatively informal and
speculative. Additional trials of this experiment are needed
to lend strength to the exploratory findings reported here,
and to identify which trends are truly representative of
problems in distributed requirements engineering.
Nonetheless, even at this early stage, we have identified a
number of interesting trends and problems that can form
the basis of more targeted research projects (e.g., the
relative impact of synchronous and asynchronous
elicitation methods on outcome).

Another obvious extension would be to contrast group
distributed requirements teams with a control condition of
co-located face-to-face meetings. This would lead to a
better understanding of how the distributed setting
influences the process and result. Perhaps a future study
could conduct the entire requirements analysis just with
co-located teams and then those results could be compared
to the distributed team results obtained here.

The location of the groups is not the only interesting
variable we could investigate in future studies. We could
consider controlling the specific elicitation methods that
groups were allowed to use. By fixing the methods we
could have sharper contrasting views on the effectiveness
of specific requirements elicitation methods. This study
was an exploratory study where we presented an array of
options and did not explicitly specify which elicitation
methods groups were to use. We wanted the groups to
have some freedom to choose their approach merely for



the sake of seeing what they would do, and how this would
affect SRS quality in the end.

Our findings seem to suggest that asynchronous tools
and methods may not be as effective at supporting
distributed requirements engineering. What if we had a
control group of engineers that only could perform
requirements analysis with asynchronous techniques?
Imagine an Asian software development firm conducting a
requirements analysis for a product with the customer
based in the United States. Whenever a customer’s
workday does not have overlapping hours with the
engineers this is a possibility. In this situation
asynchronous collaboration may be the norm with few
opportunities for synchronous meetings.

Distributed requirements engineering, and distributed
software engineering in general are large research areas for
the future. With the increasing quality of communication
and the decrease in communication cost it only makes
sense that more distributed collaboration will be the norm
in the future. We are already beginning to have trouble
remembering a time when we didn’t perform distributed
work in software development. Continued research on
groupware to support such distributed work will help
better enable this future.

7. Acknowledgements

This work formed part of a Masters Thesis prepared by
the first author while at Virginia Tech. We want to express
our thanks to the Faculty Development Institute and New
Media Center at Virginia Tech. They provided the
computing facilities necessary to carry out the distributed
meetings. Special thanks also to the Spring 2001 students
of CS 5704 Software Engineering and CS5734 Computer
Support Cooperative Work who volunteered to participate
as subjects in the study.

8. References

[1] Brooks, F.P., “No Silver Bullet: Essence and Accidents of
Software Engineering,” IEEE Computer, 20, 4 (April 1987), 10-
19.

[2] Higa, K. Understanding Relationships Among Teleworkers'
E-Mail Usage, Email Richness Perceptions and E-Mail
Productivity Perceptions Under a Software Engineering
Environment.IEEE Transactions on Engineering Management
47, 2 (May 2000), 163-173.

[3] French, A. A Study of Communication and Cooperation in
Distributed Software Project Teams. InProc. International
Conference on Software Maintenance. (1998), 146-154.

[4] Herela, D., Greenberg, S. Using a Groupware Space for
Distributed Requirements Engineering. InProc. Seventh IEEE
International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises WET ICE '98.
(1998), 57-62.

[5] Leffingwell, Dean and Don Widrig,Managing Software
Requirements: A Unified Approach, Addison Wesley., Boston,
MA, 2000.

[6] Davis, Alan M. Software Requirements: Objects, Functions,
and States.Englewood Cliffs, NJ: Prentice-Hall, 1993.

[7] Hrones, J., Jedrey, B., Zaaf, Driss. Defining Global
Requirements with Distributed QFD.Digital Technical Journal
5, 4 (Fall 1993), 36-46.

[8] Ocker, R., Hiltz, S.R., Turoff, M. Fjermestad, J., Computer
Support for Distributed Asynchronous Software Design Teams:
Experimental Results on Creativity and Quality. InProceedings
of the 28th IEEE International Conference on System Sciences.
(1995), 4-13.

[9] Potts, C., Takahashi, K., Antón, A. Inquiry-Based
Requirements Analysis. IEEE Software 11, 2 (March 1994), 21-
32.

[10] van Lamsweerde A, Darimont R, and Massonet Ph. The
Meeting Scheduler System: A Problem Statement. Available via
ftp: //ftp.info.ucl.ac.be/pub/public/92/MeetingScheduler.ps

[11] Aoyama, M. Agile Software Process Model. In
Proceedings of the 21st IEEE International Computer Software
and Applications Conference COMPSAC ’97(1997), 454-459.

[12] Gorton, I., Hawryszkiewycz, I., Ragoonaden, K., Chung,
C., Lu, S., and Randhawa, G. Groupware Support Tools for
Collaborative Software Engineering. InProceedings of the 30th

IEEE International Conference on System Sciences. (1997),
157-166.

[13] Centra, “Centra Products and Services – Centra
Symposium” available from:
http://www.centra.com/products/symposium/info.asp Internet
accessed 10 October2000.

[14] Karolak, D. Global Software Development: Managing
Virtual Teams and Environments. IEEE Computer Society, Los
Alamitos, CA, 1998.

[15] Carroll, J.M., Rosson, M.B., Isenhour, P.L., Van Metre, C.,
Schafer, W.A., & Ganoe, C.H. 2001. MOOsburg: Multi-user
domain support for a community network.Internet Research,
11(1), 65-73.

[16] Lloyd, W. J., Tools and Techniques for Effective
Distributed Requirements Engineering: An Empirical Study.
Masters Thesis, Virginia Tech, 2001. Available at:
http://scholar.lib.vt.edu/theses/available/etd-07262001-110924/

[17] Dennis, A.R., Valacich, J.S. 1999. Beyond media richness:
Towards a theory of media synchronicity. In Proceedings of
HICSS’32, New York, IEEE.


	University of Washington Tacoma
	UW Tacoma Digital Commons
	2002

	Effectiveness of Elicitation Techniques in Distributed Requirements Engineering
	Wesley James Lloyd
	Mary Beth Rosson
	James D. Arthur
	Recommended Citation


	Microsoft Word - paper19.doc

