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ABSTRACT

Freshwater availability is a growing global concern, and desalination is often presented as
the solution, but from this important technology comes issues of toxic waste. Ecosystems are
delicate areas that contain species adapted to that specific location, and any chemical or physical
changes can disrupt the fitness of species. The concentrate byproduct waste from desalination
plants is toxic to species if the concentrate is not compatible with the receiving water body. A
critical review of scientific articles, industry-leading books, conversations with industry experts,
and information from the American Membrane Technology Association conference was used to
analyze the current knowledge. Species health and environmental conditions are affected by
chemical changes, such as an increase in salinity levels, which may be lethal or detrimental to
growth. Desalination process types determine different chemical concentrations and physical
characteristics, and depending on the receiving water body, the concentrate needs alteration to be
compatible with the receiving water body. Solutions vary by location, but possibilities include
beneficial ecological options that restore habitat water volume, economic benefits that use the
concentrate, and technical changes that blend the concentrate more effectively in surface water
outfalls. Identifying the potential ecological issues from concentrate waste and developing
sustainable practices before harm is caused will protect valuable ecosystems that connect all life

on earth.




ACKNOWLEDGMENTS

Enormous appreciation and gratitude go to those that helped to make this research
happen. This research would not have been possible without many people and support services
there to help. Thank you to the research team, fellow researcher Krystal Hedrick and advisor Dr.
Elizabeth Bruch, and to the entire Global Honors Program with Dr. Divya McMillin, Alexis
Wheeler, Paul Carrington, and fellow students in the program. In addition, thanks to all the
faculty, staff, and services at the University of Washington, including the Teaching and Learning
Center staff. Also, thanks for all the inspiration and guidance received over the years from
former professors at Tacoma Community College and the University of Washington Tacoma.
Finally, this research is indebted by the financial support and opportunity from the Bamford

Foundation. Again, thank you all for the help!




TABLE OF CONTENTS

N 0] 1 - T S PP [
ACKNOWIEAGEMENES ... ii
ADDIEVIALIONS .o 1\
1] € oo [ Tox 4 o] I 1
MEENOOS ... e 4
DESAlINALION ..o 5
PIOCESS Ty P ettt et e 5
Concentrate Properties ........oouiiriii i 6
DiSP0oSal OPtIONS  ...oeiii e 8

Case Study: Cape Town, SOUth AfFiCa ..o 9
Ecological EffeCtS ..o 11
ChemicCal FaCtOrS ...t e 11

PH 11

Concentrate MOVEMENT ... i e 12

Heavy Metals ... 13

Biological FaCtOrs .........cooiiiriii i 15
SPECIES DIVEISITY .ot 15

T 0] P 16

Marine Benthos ..ot 17

Do U] o] o H PSP 18
RO BN .o 25
A DDA o 33




ABBREVIATIONS

AMTA American Membrane Technology Association
Ar arsenic

AWWA American Water Works Association
B boron

BWRO brackish water reverse osmosis
°C degree Celsius

Ca calcium

CaCOs calcium carbonate

Cd cadmium

CO2 carbon dioxide

Cr chromium

Cu copper

CuSOq4 copper sulfate

EC electrocoagulation

Fe iron

g grams

H* hydrogen atom (proton)

H20 water

hr hour

km kilometer

L liter

m meter

Mg magnesium

mg milligram

mL milliliter

Mo molybdenum

MSF Multistage flash evaporation
NaCl sodium chloride

NaCIlO sodium hypochlorite




NaHSOq sodium bisulfate

NF nanofiltration

NH3 ammonia

Ni nickel

02 oxygen

OrgC organic carbon

Pd lead

pH potential of H" atoms available

ppt parts per thousand

RNG renewable natural gas

RO reverse oSmosis

shock ED shock electrodialysis

SO4* sulfate

Sr strontium

SWRO seawater reverse 0smosis

uL microliters

W Kendall’s W statistic (Coefficient of Concordance)
ZLD Zero Liquid Discharge

Zn zinc

=MRT osmotic pressure formula (x = 3.14, M = molarity, R = ideal gas constant, T =

temperature in Kelvin)




INTRODUCTION

Many regions in the world take an ample supply of clean freshwater for granted, where
water has always been available on demand. In contrast, many regions of the world lack the
minimum requirements for clean water, and some 844 million people worldwide are without an
available drinking-water service (WHO 2018). Unfortunately, the access to the fresh water
situation will worsen. An increasing population is stressing water sources, and climate change is
altering the distribution of the hydrologic cycle, the natural movement of water, to make some
water sources unreliable (Hagemann et al. 2013). Climate change will warm areas to generate
more evaporation, and it will reduce rainfall in some areas while increasing it in others
(Hagemann et al. 2013). In areas predicted to increase in rainfall, tapping into freshwater
resources is usually not the problem. In contrast, areas that are predicted to decrease in rainfall
face greater challenges in the global problem of water scarcity. The World Health Organization
(2018) predicts that by 2025, half of the people on earth will reside in a water-stressed area.
Water is a vital resource to facilitate life and is used in excess to raise the standard of living.
Without water, all life ceases to exist. Thus, a reduction in water availability not only makes life
more difficult, but it may also create conflict to secure such a valuable resource. People need
water, and a speedy solution is paramount.

A leading solution to providing freshwater is with desalination technology, which is the
process of removing salt from water. There are various processes of desalination that extract
drinking water from a saline source, such as the sea. With a large amount of the population living
near the sea, and such a vast resource available, desalination of seawater is an obvious solution.
Desalination currently only produces about 1% of the freshwater used today, but production will

double by 2030, and production growth is expected indefinitely (Voutchkov 2016). Currently,



there are over 18,000 desalination plants in operation globally that utilize two main processes,
membranes which separate through pressure, and thermal evaporation that uses heat (Voutchkov
2016). The energy required for desalination is a limiting economic factor, but the technology has
proven to be a reliable supply of freshwater to areas in need.

Ecological concerns are secondary to providing economically viable water in an
extremely competitive industry, and the best solution would produce incalculable profits (Villiers
2000). One of the biggest concerns regarding economic feasibility comes down to energy, and
desalination requires an enormous amount compared harvesting from a freshwater source. The
energy difference adds greenhouse gas emissions, and trying to solve a related climate change
issue, while adding to the cause of climate change, is futile. Therefore, the energy required
creates another indirect ecological effect which must be considered, but volumes of other
research address this topic. There are other ecological effects from the process of desalination
too. The intake system can draw small organisms into the pipe, reducing the bottom of the food
chain. Membranes need frequent replacement, which adds to landfill waste and resources spent
on production. Future research about effective solutions to these, and other problems need to be
addressed, but they are not within the scope of this research.

When fresh water is extracted from saline water, the saline water increases in
concentration. This concentrated saline solution, known as concentrate, is generally of little
economic or practical use, and it is considered a waste byproduct that needs to be disposed of
back into the natural environment. Pretreatment chemicals used in the process may also end up in
the effluent waste stream, which creates an additional problem for disposal. Location is key for
disposal, and disposal may harm species or degrade the environment. Finding effective solutions

for concentrate disposal is vital for local and overall ecological health. Therefore, each



desalination plant requires a thorough analysis of disposal options, based on numerous factors,
and this research identifies the issues and presents solutions that minimize ecological harm and
develops sustainable practices. The issues for decision-makers vary. The private sector may be
focused on costs, community members desiring water access, activists concerned with
environmental health, and government officials worried about getting reelected, needing the
community and the private sectors’ support. With a background in environmental science, and
through an ecotist lens, which values all species, this research will frame the global issue of

concentrate disposal from desalination plants on the environment.



METHODS

A critical literature review was conducted, using electronic database access provided by
the University of Washington (UWT). Relevant articles that were peer-reviewed and based on
quantitative analysis provided the strongest supportive evidence. Industry-leading books on
desalination helped to explain the fine details of the process. In addition, published articles and
handouts were analyzed from industry leading organizations, such as the American Membrane
Technology Association (AMTA) and the American Water Works Association (AWWA). Also,
a case study of Cape Town, South Africa that has turned to desalination was examined, using
local news sources, organizations, and government websites to evaluate disposal options.

Conferences and seminars were attended to support research. The 2017 Northwest
Climate Conference in Tacoma, WA emphasized changing water availability and adaptation. The
AMTA and AWWA held a joint annual conference at West Palm Beach, FL in 2018 that
premiered desalination membrane technology, which provided discussions with industry experts,
presentations of experiments, and the latest product solutions. At UWT, relevant science
seminars also provided insight. The collection of knowledge was organized and analyzed.

The research was performed over the course of a year through the Global Honors
Program at UWT. A proposal was submitted, and this was awarded the Bamford Fellowship.
Funding was provided through the Bamford Fellowship and UWT’s conference and training
fund. This research was in collaboration with Krystal Hedrick, that studied restoration of water
resources, and Dr. Elizabeth Bruch that advised the collaborators' research, emphasizing a social
framework to water access. This research sought to answer the following research questions:

e How is the concentrated byproduct from desalination affecting ecological systems?

e How can any harmful ecological effects be reduced or eliminated?



DESALINATION: PROCESSES, CONCENTRATE, & DISPOSAL

Process Types

There are two main types of desalination: Membranes and distillation (See Appendix A).
Both processes need a substantial amount of energy, but they use it in different ways:
Membranes use pressure, and distillation uses heat. Determining the desalination process
depends on numerous factors, such as the source water, the amount of potable water needed,
overall quality desired, energy and chemical availability, and disposal methods available (AMTA
2007¢). These factors then influence what pretreatment is needed, and the concentrate’s salinity
and physical properties will then reflect the process used.

Membrane processes use pressure on a saline solution to diffuse H,O molecules across a
semipermeable membrane while keeping the salts and contaminants in the feed water. Most
desalination plants use membrane technology, such as reverse osmosis (RO), nanofiltration (NF),
microfiltration (MF), ultrafiltration (UF), and electrodialysis (ED). Membrane processes are less
energy intensive than distillation methods. Each type of membrane uses a different membrane
permeability, which operates at different pressures, are ideal for various types of source water,
and have different ranges of permeate recovery amounts (VVoutchkov 2014).

In a thermal distillation plant, heat is applied to boil saline water, evaporating H.O as
vapor and then condensing it into liquid water. The thermal energy required is the main
drawback in economic costs and greenhouse gas emissions. Due to the high cost of energy, these
systems are common in the Middle East, where oil is abundant. The main distillation methods
are Multistage flash evaporation (MSF), Multieffect distillation (MED), and VVapor compression
(VC). Each process produces a quality product, but these systems only get about 25-50%

recovery rates, the ratio of freshwater extracted (AMTA 2007c).



Concentrate Properties

The concentrate chemical composition from desalination plants varies at each location, as
the source water contains its own contaminants. These contaminants may be organic microbes,
minerals from local geologic substrates, and pollutants from nearby anthropogenic activities, etc.
Pretreatment chemicals include antifoulants, antiscalants, coagulants, and a strong acid or base
for cleaning (See Appendix B). The process itself affects the byproduct, such as the saline
concentration or temperature of the solution, etc. Even the equipment used may add elements to
the concentrate. Chemicals and physical properties have varying effects on the environment.
Salinity is the number of salt ions dissolved in a volume of water. The salinity of the concentrate

depends on the initial source water concentration and the recovery rate of the process type

volume of fresh water produced

(recovery rate % =

x 100) (Voutchkov 2014). While there is a

volume of intake water

technological race to increase recovery rate, generating more valuable fresh water product, a
higher salinity concentrate is also generated.

The salinity and properties of the concentrate dictate how the waste byproduct interacts
with the environment. The higher concentration of salinity, the higher the density, which causes
it to sink below a less dense solution. The dense solution sinks to the ocean floor and expands,
where dispersion mixing decreases with greater depth (Cooley et al. 2013). In contrast, the
addition of cooling water from MSF lowers the concentration, and therefore lowers the density,
and with the higher temperature of the discharge, the discharge may float on the receiving water
surface (Lattemann and Hopner 2003). Changes in temperature affect the amount of dissolved
oxygen, with higher temperatures containing less oxygen. The temperature change from RO is
negligible since heat is not applied, but the concentrate may be blended with heated water from

other industrial processes (Cooley et al. 2013). The main concern of temperature differences is



with distillation operations that are heat dependent, and the concentrate may be 10-15°C above
the receiving water ambience, which is even after being diluted and cooled (Miink 2008). Naser
(2015) found a difference of 14°C higher than ambience about 400m from an MSF plant. An
advanced cooling system that reduces the temperature to the same as the receiving water is a
vital solution when considering a distillation operation.

The source water typically undergoes pretreatment to prevent fouling and scaling, which
is when the membranes get plugged up from contaminants (Voutchkov 2014). Pretreatment
chemicals depend on the process and source water, and these may remain in the effluent plumes.
However, advancements of new techniques may greatly reduce the need for pretreatment, such
as adding an NF membrane, a shock ED, or using electrocoagulation (EC) (Kabarty 2016, Deng
et al. 2014). Shock ED separates ions with low voltage electricity rather than pressure (Deng et
al. 2014). EC creates a chemical coagulant from the metal anode, undergoing dissolution and
hydrolysis reactions, that isolates coagulants in several ways (Kabarty 2016). These electrical
techniques, if used with renewable power, may be a major technological sustainable solution,
preventing chemicals in the environment by not using them initially.

Naturally occurring metals and compounds of seawater, such as Mg, B, Ca, and SO4%,
that remain in the waste will increase in concentration (Cooley et al. 2013). Furthermore,
distillation component parts may corrode from seawater, releasing Cu, Zn, and Ni, while
stainless steel from the RO process releases metals of Fe, Cr, Ni, and Mo (Cooley et al. 2013).
Alshahri (2017) researched heavy metals in the Arabian Gulf, comparing desalination outfall
locations to nearby natural locations, and found elevated levels of Cu, Cr, Ar, and Sr, while

Naser (2015) also found elevated levels of Cu, Cd, Pd, Zn, and NH3".



Disposal Options

All desalination plants create a concentrated byproduct that needs a solution for disposal.
Figuring out a viable disposal option is so critical, that Dr. Robert Reiss of Reiss Engineering
states, “If you don’t have a concentrate disposal, you don’t have a budget” (informal roundtable
discussion, March 10, 2018). There are many factors that determine the best disposal option, but
in most locations, not all options are available. The common ways to dispose of concentrate are
surface water discharge, sewer disposal, deep well injection, land application, evaporation ponds,
zero liquid discharge, and some other lesser used methods (See Appendix C).

Sometimes there is a lack of disposal options, and other times there are several to choose.
When more than one option is available, regulations should defer the decision to the least
environmentally impactful, or if available, one that may benefit the environment. Typically, there
is an extra cost associated with doing what is best for the environment, and regulations should
also provide tax incentives to mitigate the difference between options. The initial investment is
often a challenge to overcome, especially when already investing in a major desalination plant. A
wetland in Mexico, the Ciénega de Santa Clara, is currently used for concentrate disposal, aiding
a valuable ecosystem, with no detrimental effects reported (Arizona 2011). All Californian
desalination plants in development are designing an ocean or estuary disposal (Cooley et al.
2013). Government assistance for an ecological benefit, such as wetland application or adding to
an overdrawn river, is more than justified because it also enhances society through recreational
activities, property values, and environmental health, such as clean air through increased biomass

production.



CASE STUDY: CAPE TOWN, ZA

Cape Town, South Africa is a prime example of drought greatly affecting water access.
Conditions have reached critical levels, and the term Day Zero is known as when Cape Town
will run out of water. A massive conservation effort has delayed Day Zero till 2019. The
government has imposed a limit of 50 L/day of water per person (Evans 2018), while an average
person in the U.S. uses about 340 L/day (USGS 2018). Michael Kiparsky, a director of the
Wheeler Water Institute at UC Berkeley, proclaims the situation of, “Cape Town as a warning
shot for us. What we can see is that it's very possible for water crises, which emerge all the time
around the world, to get close to the point of real, massive human disaster” (Simon 2018).

The solution has been a rush to build at least seven SWRO desalination plants, which will
generate 2.0x10% L/day by July 2018 (The Source 2018), but this falls well short of a city that
had used 1.1x10° L/day (Simon 2018). The plants are designed to use diffusers on the outfall
(The Source 2018), but disposal is an expensive part of construction costs, so the diffuser option
may be neglected in a rush to get water now and to keep costs down. In addition, modeling
analysis and due process are discounted in such situations. Relying only on desalination will not
be sufficient, and Cape Town is an example of a place needing to diversify its water sources,
because as Lesley Green of the University of Cape Town states, “It doesn't make sense to me to
solve one ecological problem by creating a whole lot more” (Simon 2018). A difficult situation is
compounded by poor planning and resource use, potentially harming valuable ecosystems.

Cape Town is in the middle of the west coast region, and there are two marine bioregions
near the shore of Cape Town (Agulhas, South-western Cape) (Griffiths et al. 2010). The seven
desalination plants around Cape Town will dispose into either bioregion. The western coastline is

shallow, and vast research has identified the west coast with the greatest richness of species



because 83% of all marine species are found in less than 100m depth (Griffiths et al. 2010). The
northward current from Antarctica is frigid, which will require greater osmotic pressure, and
therefore, more energy for desalination, as temperature is a variable in osmotic pressure
(m=MRT) (Swartz et al. 2006). Highlighting source water challenges, the high winds in the area
cause up-welling of nutrients, making the water quality not consistent, and this will require
higher amounts of chemicals to prevent fouling, while the south and east coast has warmer
temperatures and fewer nutrient levels (Swartz et al. 2006). Unfortunately, Cape Town’s location
prevents harvesting from a more reliable and less expensive to process source water, with
mountains and distance between this better source water providing too great an obstacle.
Disposal using diffusers still has an ecological effect, and there are regulations in Cape
Town that monitor water industry development (Swartz et al. 2006). About 23% of the coast in
South Africa is considered a protected area, but there is minimal enforcement from the
government to protect the marine areas, and only 9% of the protected area receives full
enforcement (Griffiths et al. 2010). Instead of ocean discharge, Cape Town could use wetland
application. Most of the 343 estuaries in South Africa are on the east coast, and the remaining 51
estuaries on the west coast are too far from Cape Town, except for the Diep estuary (Griffiths et
al. 2010). Desalination plants on the northern side of the city (Granger Bay, Hout Bay) could
consider discharge into the Diep estuary to support a vital habitat. The Diep River flows through
the estuary and into the sea in the winter, but in summer the river runs dry due to low rainfall,
and the estuary becomes landlocked and hypersaline (Milgard and Scott 2010). Even though the
Diep estuary is seasonal, the natural hypersalinity by evaporation makes this a potential fit to
support species year-round, connecting the estuary back to the ocean, especially with more than

one plant discharging into the estuary (See Appendix D).
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ECOLOGICAL EFFECTS

How is the concentrated byproduct from desalination affecting ecological systems?

Ecological effects range from anything that reduces at least one individual species fitness
to interactions on a global scale (Molles 2016). While change is constant, typically, change
happens very slowly in the natural world, such as geologic creations of mountains or
evolutionary shifts. Species have evolved over a long period of time, under relatively stable
conditions, which has helped species to fulfill certain niches in the food web or location (Molles
2016). Ecologic systems are highly integrated and full of complex interactions. Most studies
have found negative impacts to environmental conditions from desalination plants (Cooley et al.
2013), and this may come from pollution through pH differences, how the concentrate flows,

heavy metals, and deoxygenation, all of which can influence species and overall diversity.

Chemical Factors

pH

pH is the potential of H™ atoms available, ranging on a scale of 0 (acidic) to 14 (alkaline),
and can be found using either (pH = - log [H*]) or ([H*] = 10P"). The pH of intake water is often
manipulated to make the desalination process more effective when certain particles or
temperatures are encountered, such as increasing the pH to 10-11 to make the rejection of boron
easier when water temperatures are high (Voutchkov 2014). Before the concentrate is released,
the pH is usually adjusted to match the water body (Voutchkov 2014), but it may not be in all
locations, nor exactly match the ambient when adjusted. Even a slight pH difference will
generate different chemical concentrations that species may be temporarily or constantly

subjected to in the outfall location. The ocean has a stable overall pH of 8.1 today, which is
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down from a historic level of 8.2 due to ocean acidification (NG 2017). Since pH is a log scale,
the lowering of 0.1 pH is a 25% difference in H* ions (NG 2017). Even this pH change is well
known to have detrimental effects on species because required ions, such as calcium from
CaCO:s for building shells, are not as readily available (NG 2017). Therefore, the pH differences
of concentrate versus the sea represent a problem for species, both in available required chemical
compounds, but also in toxic compounds that may be present in much greater concentrations

than species have adapted to biologically process.

Concentrate Movement

When emitting the waste back into the ocean, diffusers mix and spread out the waste
more equally than emitting from a single point source (Cooley et al. 2013). Developers are
increasing diffusers into the design of new desalination plants globally (Cooley et al. 2013).
Blending the waste helps flora and fauna not be exposed to high concentrations of pollutants that
could be detrimental to species’ health. Despite the benefit from diffusers blending the waste, the
concentrate will still create a plume and sink to the ocean floor and expand (See Appendix E).
There also remains a possibility of any contaminants in the waste accumulating in the sediment.
The toxins that are emitted may not be biodegradable. Toxins may remain in the environment
and could eventually elevate in concentrations unhealthy to flora and fauna species.

In Australia, an experiment to determine concentrate movement put dye into the waste.
The concentrate was witnessed to initially rise as it exited upward, but then sank towards the
seafloor and expanded outward of up to 1.5km (Khan 2007). The concentrate can fill up channels
and reduces mixing, causing stratification (Khan 2007).

Reiss explains that deoxygenation does not usually occur in the desalination process,

except in the case with excess sodium bisulfite added to remove free chlorine (See Appendix B).
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Whatever oxygen content the source water contained remains in the concentrate. However, it is
the stratification of layers that causes deoxygenation because Oz is used in respiration by species,
and the prevention of vertical mixing does not allow the replenishment of O2. The source water
may contain rich amounts of organic carbon material, which gets digested in organisms and
released as CO; gas (OrgC + 02 = CO2 + H20) (Hemond and Fechner 2015). Low dissolved O>
levels have been detected in proximity to outfalls in shallow bays, such as in Perth, AU (Cooley
et al. 2013). Also, the new constant flow of organic material may cause a bacterial bloom, with
the respiration consuming O in the process, and depleting the available O for species naturally
present.

Temperature differences can greatly affect the species within an ecosystem. The
ecological effect of temperature may change seasonally: A temperature increase in winter may
allow species growth, while summer increases are undesired since water temperatures are
already elevated (MUnk 2008). However, depending on the receiving water, such as in rivers and
lakes, species growth in the winter may not be desired, especially when considering that cold

winter temperatures reduce mosquitos that carry pathogens.

Heavy Metals

Heavy metals are a potent type of toxic pollutant that will not break down. Another
concern is that the heavy metals undergo speciation, that is, an element, such as copper (Cu?"),
will immediately react with H2O to create different hydrolysis compounds, such as Cu(OH)a,
CuOH*, Cu(OH)3", Cu(OH)4?*, and Cuz(OH)2* (Jensen 2003). The presence of COz(g) products,
such as carbonic acid (H2COs(q)), also reacts with copper to form CuCOs, Cu(COs)2%, along
with even more compound products (Jensen 2003). For example, CuSQO4 is commonly used in

RO, and the soluble CuSO4 compound undergoes hydrolysis reactions, resulting in the many
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copper products mentioned above (Matavos-Aramyan et al. 2017). Copper has a low toxicity to
species, but it will accumulate, and the higher levels from bioaccumulation will negatively affect
species (Chadha 2015). Depending on the pH of the system, the concentrations of each species
product can be calculated. However, the copper example provides an insight into the
complexities of heavy metal pollution. Each chemical product has varying degrees of tissue
absorption and effects on a species. Therefore, the number of chemical products and specific
species responses is vast and is beyond the scope of this research.

In the Arabian Gulf, research by Alshahri (2017) studied the concentrations of heavy
metals near outtake areas from desalination plants. The data was compared to similar areas in the
Gulf, and to standard levels of shale, which is the common local geographic substrate (Alshahri
2017). That research provides strong support for pollution from an anthropogenic source. Heavy
metals may be introduced from the metallic parts in the process (Alshahri 2017). Heavy metals
can be very toxic to fauna, causing “reduced growth, development, cancer, organ damage,
nervous system damage, and, in extreme cases, death” (Ogoyi et al. 2011). In flora, heavy
metals, such as copper, have also shown reduced growth and lower survival rates (Hanley 2017).
One effect that is predictable is the bioaccumulation of toxins through trophic levels, where
toxins in water transfer to lipid cells (Molles 2016). In a polluted environment, the primary
producers (plants) absorb some toxins into their tissue, and then the primary consumers eat the
toxic tissues, accumulating a greater concentration within the consumer’s tissue (Molles 2016).
At the next trophic level, the secondary consumers feed upon the primary consumers, increasing
the toxin concentration (Molles 2016). Each trophic level increases the concentration of toxins
within the species, leading to acute or chronic toxicity effects (Cooley et al. 2013). An example

of this is the commonly known problem of mercury in seafood. The toxic heavy metal mercury
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bioaccumulates through each trophic level, increasing in concentrations that becomes harmful for

top consumers to eat.

Biological Factors

Species Diversity

Some species are specialized in their niches, while others are more general. Removing a
single species can have a cascade effect though the food web, either benefiting some or harming
others (Molles 2016). Species richness, the amount of species present, and species evenness, how
balanced each species is to each other, are calculated to give a diversity score, known as the
Shannon-Wiener Index. The Shannon-Wiener Index provides a useful score to grade diversity
and allows the effects of concentrate on species to be easily compared. Despite useful tools
available for comparison, a challenge with determining ecological effects stems from the lack of
data of pre-waste disposal in areas affected (Cooley et al. 2013). Additional challenges to
knowing the full effects come from studies that are focused on the short term, rather than the
long-term possibility of acute and chronic toxicity (Cooley et al. 2013).

An experiment by Peterson et al. (2016) showed a significant difference in species
richness near the outflow compared to the inflow (Chi?-test, 187, df=6, p=0.001). In research by
Jenkins et al. (2012), some species may be harmed by only 2-3 ppt salinity change, while other
species are more fit to salinity changes. Changes in environmental conditions, such as pollution,
or in the species present can greatly affect the food web. Species have life development stages
that are vulnerable at each stage, and a disruption in one stage can greatly affect the future of the
species (Molles 2016). Often, it is the smaller organisms that are first affected, and if their
numbers are reduced, then the organisms that feed upon them are reduced (Molles 2016).

However, the food web is so complex, that many effects are not predictable.
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Microbes

The diversity of species is less in extreme environments, as these conditions are often for
species that are fit for specialized niches. Microbes have been found in the harshest of
environments. Microbes are the quickest to respond to unfavorable conditions, and a study by
Van der Merwe et al. (2014) examined the differences in microbial diversity between RO outfall
locations and ambient locations. The outfall point displayed the least number of microbes, and
the trend showed an increase in microbe quantity with greater distance from the outfall (\Van der
Merwe et al. 2014). While the researchers conclude the differences not to be drastic, they
recognize the limit of their study and recommend pyrosequencing as being necessary to
determine species richness and evenness of microbes (Van der Merwe et al. 2014). The study is
also limited in determining the type of microbes, as various microbes have a range of ecological
benefits. The SWRO desalination plant used a common chlorination of NaClO weekly (10 mg/L
for 2-3 hr), and then NaHSO4 to de-chlorinate (0.3-0.5 mg/L), along with consistent use of
phosphonate as an antiscalant (3-5 mg/L) (Van der Merwe et al. 2014). The RO process and
chemicals killed all phytoplankton and almost all the bacteria, but 2 events/uL of bacteria were
detected in the concentrate compared to 473 events/uL in the feed water (Van der Merwe et al.
2014). The small number of bacteria that survive provide a constant propagule pressure of
species, considering that they have an advantage in the changed environment and may come
from an intake some distance away. The few microbes that survive may drastically reduce the
richness and evenness by dominating the new environment. The data does support an effect of

mortality on microbe quantity from the concentrate.
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Marine Benthos

Marine benthos is those species inhabiting the seafloor. In a study comparing concentrate
effects in Bahrain by Naser (2015), there was a significant difference in the macrobenthic
community between an MSF and RO plant of similar ecosystems. In the MSF area, 371
individuals of 43 species were identified for a Shannon-Wiener diversity score of 1.5+0.4, while
in the RO area, 1403 individuals of 63 species were identified for a Shannon-Wiener diversity
score of 2.3+0.2 (Naser 2015). The variance in the species community between the locations was
also significant using a non-metric multidimensional scaling analysis (ANISOM: R=0.541,
P=0.001) (Naser 2015). A W statistic measuring disturbance displayed a trend of greater
disturbance in the MSF area (Naser 2015). Indicator species are useful for determining
environmental conditions. Polychaete species, an annelid worm, are often used as an indicator
(Giangrande et al. 2005), and presence of these species indicate organic-rich conditions that stem
from sewage or oil outfalls (Carregosa et al. 2014). In both RO and MSF locations, polychaetes
were the most abundant (Naser 2015), indicating poor overall environmental conditions in both
locations.

There are a variety of marine ecosystems, such as seagrass and coral reefs, that provide
an important habitat for marine species, renewable sustenance, and shelter for numerous species
(Naser 2015). The study by Peterson et al. (2016) found larger sand grain sizes due to the higher
flow from the outtake. A high rate of flow washes away the smaller grain sizes of sand. Flora and
fauna species rely on certain sediment conditions during their life cycle. A slow rate of outflow
could reduce washing away grain sizes. Maintaining environmental habitats is crucial to

maintaining species presence.
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DISCUSSION

How can any harmful ecological effects be reduced or eliminated?

The greatest potential for ecological effects of concentrate discharge occur in surface
water discharge. Thus, mitigating these effects is of the greatest concern. In a sustainable
solution, there is no detrimental change in environmental conditions. Blending the discharge to
match salinity, temperature, pH, and dissolved oxygen of the receiving water, while not
introducing new pollutants, needs to be the design standard of all plants. Salinity may be
matched by blending with other effluents, such as the stream after a waste treatment plant.
Temperature differences require greater cooling system designs before releasing the waste. pH
can be closely monitored and adjusted, with improved systems using little to no acids or bases in
the cleaning process. Dissolved oxygen changes may be prevented with close free chlorine
monitoring, as well as screening of organic carbon sources to prevent byproduct reactions from
consuming Oz. All aquatic management should be performed in a synthetic system prior to
outfall release, and therefore, the most minimal impact to species and the ecological system
occurs. To achieve the desired results, quantifiable research is needed to advance designs with
room for improvement.

There is no perfect desalination plant that fits all areas and complexities. There are
certain aspects of the desalination process that apply to all scenarios. The location of the plant
should play a prominent role in determining the disposal method. The concentrate from each
process and chemical additives to counter source water conditions results in a range of
chemically variable concentrates, and this must be considered for disposal. The key questions to
consider when disposing into natural water systems are: Is the environment appropriate for the

discharge, and is the wastewater compatible for the environment? Those are the central guiding
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questions for every situation concerning disposal. For example, freshwater may seem suitable to
dispose of anywhere, but freshwater is toxic to organisms in saline environments, and vice versa.
Organisms have evolved to exist in the conditions of their habitat. Co-discharge, where
concentrate and effluent waste is blended together to make a solution comparable to ocean water
or freshwater, depends on the concentrations of the receiving water body. Co-discharge is not
common, but some large-scale plants use this practice, such as in Barcelona and Japan, but co-
discharge is a likely waste solution for a quarter of new plants in California (Cooley et al. 2013).
The following guidelines will help to mitigate more costs onto the environment.

The recovery rate is not important if a large volume of source water is available, such as
the ocean. While it would require more volume to withdraw, the lower recovery means a less
saline concentrate that would be easier to dispose of back into to the ocean. While the
technological focus is on efficiency and getting more squeeze out of the source, that may not be
the ideal environmental solution. When needing to make the concentrate compatible with the
receiving water, more water would be required to dilute the concentrate.

New technology should focus on designing desalination systems with minimal chemical
additives which would prevent such chemicals emitted into the environment. The design ties
back to the source water, as each site has a unique water chemistry that must be managed. In
addition, the desalination plant needs proven products that do not leech metals, especially with
distillation processes. Furthermore, newer methods for pretreatment, such as electrocoagulation,
should be the pursuit of research. Another focus of the industry should be on redesigning the
material of the membranes to prevent many of the fouling and scaling problems.

Desalination adds to climate change through greenhouse gases, which is a reason for the

need of more water. Releasing carbon into the atmosphere from a stored source in a linear
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system is unsustainable and contributes to climate change. First, the energy needed to desalinate
water needs to come from renewable and nonpolluting sources, such as solar, wind, or wave
energy. Since plants may be regionally isolated, the power needed could be supplied without
requiring the infrastructure connection to the electrical grid. Emerging technologies are
developing renewable natural gas (RNG), which is methane obtained from biomass. When used
with RNG, technology from EFD Corp. is promising. There are also situations where the
desalination plant is located next to a power plant or other water user that heats water in its
production, and that preheated water can be the intake supply, reducing the energy needed.
However, as Spaetzel (2018) explained during a conference talk, the water from power plants is
often unpredictable, as chemicals may have been added from the source plant, through cleaning
or other means. The unpredictability can be solved by better communication and partnership
between the source plant and the desalination plant. Perhaps the power plant needs a chemical
additive for cleaning, but then communicates this to the water plant, and the necessary duration
of contaminated water can be diverted.

Using the concentrate to produce biofuel is a direct benefit for society, as well as it will
not add to environmental degradation. This solution may work for a variety of locations, in open
ponds if quick evaporation is not an issue, or perhaps within closed containers in arid locations.
Available land is an issue, along with an infrastructure in place to support biomass production,
but this solution will absorb CO- and use carbon in a cyclical loop.

Evaporation ponds do have the benefit of creating a beneficial product, as this salt can be
used as a de-icing agent on roads in freezing locations (Desalitech 2017). This is a low-tech
solution that works in arid regions, such as the southwest U.S. and the Middle East. Humid

regions, such as Florida, would not work because evaporation rates are slower.
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ZLD offers perhaps the easiest of all disposal solutions in a trip to a landfill facility, but
endless trips to the landfill is not a sustainable solution. However, if transport vehicles did not
emit CO, then this solution is acceptable. It is possible to extract metals from the solid which
provides an economic benefit, but as each site has a different water source, the product will also
produce elements present from the source. For example, limestone is prevalent in Florida, so a
high quantity of calcium will present, but a high amount of magnesium will also be included
since magnesium is a suitable substitute for calcium in limestone. Note that limestone could be
either calcite or aragonite. Both minerals are considered CaCOs, but they differ in their
molecular structure, and the compact structure of aragonite allows for more substitution of
magnesium for calcium, adding to the complexity of what to expect in the product (Klein and
Philpotts 2017).

Wetland applications may be the best ecological solution, as it may directly benefit an
ecosystem. It may even be possible to build such an ecosystem in areas with little ecosystem
activity, such as an open desert, supporting one of the most important beneficial habitats, and the
concentrate can provide the source of water (Arizona 2011). However, natural environment
applications need to be concerned with areas that are seasonal, as no movement of water will not
mix nor dilute the concentrate for proper disposal.

There are additional disposal challenges, as Reiss explains an impossible discharge
scenario is one with a source water that is already contaminated. For example, source water from
a tech industry may contain various amounts of toxic metals unsafe for disposal. Those
contaminates will not only remain in the concentrate, but it then becomes more concentrated.
Adding another challenge to disposal is the shifting of source water extraction. Utility companies

will extract water from the least expensive source, such as a near-surface aquifer, as utilities used
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to extract from in Florida. However, this source became overdrawn and no longer viable, so the
next least expensive source was used, a deeper brackish water aquifer. Now there is a source
water with much different chemistry that will have a more saline concentrate that cannot be
disposed of in the same manner as the previous source.

Modeling is recommended to determine concentrate movement and ideal placement of
the outfall. Specific location placement of outfalls in places of “sub-tidal, off-shore environments
with persistent turbulent flow” will help dispersion (Roberts et al. 2010). Currently, blending of
the concentrate into ocean outfalls is optimized at 30-45° angles of discharge (Roberts et al.
2010), but new diffuser designs can greatly enhance the blending with surface water discharge,
especially an economic option that new and old plants can add.

A solution that may reduce or eliminate surface water discharge issues is developing an
outfall system that includes an intake (See Appendix F). The added intake would blend the
concentrate before release into the water body. While this would not reach ambient salinity, a 50-
50 blend of ocean water and concentrate halves the salinity (e.g. 35g NaCl/L of seawater plus
70g NaCl/L of concentrate (assuming 50% recovery rate) equals a 53g NaCl/L discharge). A
second intake system would lower it to near ambient levels (e.g. 35g NaCl/L of seawater plus 53
NaCl/L equals a 44g NaCl/L discharge). An electronic monitoring system can automatically
adjust blending amounts. A diffuser emitting the lower saline concentrate would sufficiently
blend the discharge. Field studies are needed to determine effectiveness. This solution would

require added economic costs, but this would negate any harmful ecological effects.

Further Sustainable Considerations
Economic considerations drive development within the desalination industry. Ecological

consideration is made, but it is not the driving factor to technological advancement. While these
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topics may not be exclusive, such as limiting chemical use saves money and reduces pollutants,
the value of environmental capital is not fully embraced. As a pillar of sustainability, it is the
environmental capital that all economic capital draws from, and not reinvesting in the
environment leads to economic bankruptcy.

Desalination raises many questions of social access to water. Yes, potable water is
created, but for whom? The higher economic cost to produce water by desalination means better
access for the higher economic status individuals. Many do not have running water, and without
investment into distribution infrastructure, then water access remains divided. Who are the
decision makers guiding the projects, and is the project focused on economic gain or water
availability? Collaboration between policy makers, developers, and the community is key for
equal water access to all, and early on everyone should be involved. Desalination concentrate
disposal is complex, and hopefully this research helps everyone from policy-makers, average
citizens, and to those in the industry better understand the ecological effects and solutions to
concentrate disposal.

Future studies should investigate species that are near outfalls and the bioaccumulation of
relevant toxins. Continuing the research and development of diffusers is critical. Studies should
also focus on the factors of concentrate plume size, temperature, and concentration; Identifying
what is the greater impact will allow for the most detrimental effects to be minimized or
eliminated.

In conclusion, a long-term solution is reducing the amount of water used and restoration
of natural water systems. More efficient technology, better storage, personal choices, and taxes
are some ways that will prevent water being needlessly lost, as cheap water does not generate

efficient designs (Villiers 2000). Efficient technology is available and continues to be developed,
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but it needs to replace current inefficient systems. Storage of the water resource when it becomes
naturally available would help during dry times. Perhaps the best solution is to remove subsidies
and limit water usage from industries that consume vast amounts of water, including fining those
responsible for water pollution, such as the meat and dairy industry, which uses around 55% of
all freshwater resources and causes most water pollution (PETA 2018). Choice in diet has an
enormous water usage difference. Accurate costs of products will generate change, and
individuals can make a difference by choosing a vegan diet to save over 4000 L/day of water
(PETA 2018). Desalination is a great technology, but it is very energy intensive and can cause
environmental harm, so limiting the need is more important than relying on more production.
Sustainability needs to be at the forefront of decisions, because tomorrow will soon be today, and

carefully planted seeds will bear continuous fruit, or neglect will bear depravity.
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APPENDIX

Appendix A. Overview of desalination processes. For detailed parameters, including pressure,
flux, and rejection percentage, see Voutchkov (2014).

Process type

Notes

Membrane

SWRO

(seawater RO
~35,000 mg/L)

¢ Higher pressure is needed to counter the natural osmotic diffusion

e Membrane permeate flux of SWRO is less than BWRO (Voutchkov 2014)

e Concentrate from SWRO ranges from 1.5-2 times more concentrated than
the source water

BWRO

(brackish water

e BWRO waste ranges from 2.5-5 times more concentrated (\Voutchkov
2014).

400-10,000 e Less expensive than seawater
mg/L)
NF e Used when source waters are less saline but contains high color,
hardwater, or organic content, and will block cysts and viruses
e Not used exclusively (AMTA 2007a)
MF ¢ Used when feed sources contain microbial and turbidity contaminants
(AMTA 2007b)
UF ¢ Used when feed sources contain microbial and turbidity contaminants
(AMTA 2007b)
ED e Utilizes electrochemical properties, where anion and cation membranes
separate the salt ions from water
Shock ED e Emerging technique developed by researchers at MIT
¢ Rather than pressure through a membrane, shock ED runs water over a
membrane with a low voltage electric charge applied (Deng et al. 2014)
¢ Cations and anions are oppositely directed by the charge and out through
the membrane (Deng et al. 2014).
e Overall electricity needed is less than traditional RO processes
¢ Need for cleaning chemicals that clog membranes may be greatly reduced
Distillation
MSF e uses electricity and a thermal source
MED e uses electricity and a thermal source
VC e only requires electricity, as the compression of a gas generates heat
(AMTA 2007c¢)
VC (EFD e combined proven technologies of VC and spray drying
Corp.) e produces a crystallized salt (no liquid waste)

e proposes the salt can be sold as a product
e process uses natural gas, but that is available from a fossil fuel
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Appendix B. Overview of pretreatment chemical additives.

Pretreatment

Use

Concern

Antifoulants

Used to prevent fouling of the
membranes, usually in RO and
MSF processes (AMTA 2007c)
May also require the use of,
“biocides, anti-foaming
additives, and detergents”
(Cooley et al. 2013)

May contain free chlorine
Chlorine ion generates
halogenated products

To remove chlorine, sodium
bisulfite (NaHSO3) is added
Excess sodium bisulfite may
also deoxygenate the water

SOs? +§ 05 > SO2

Trace amounts of these
chemicals may be harmful
to marine species (Cooley et
al. 2013)

Antiscalants

Prevent scaling, which are
deposits from minerals on the
membranes (Voutchkov 2014)
For BWRO, sulfuric acid
(H2S0g) is added as an anti-
scalant (Voutchkov 2014)

Do not biodegrade well,
their effects are not well
known, and therefore they
continue to accumulate in
the environment and in
species (Chadha 2015)

Help remove the suspended

Overdosing can cause

Coagulants ' g ! "
solids from the feed water that discoloration to various
may clog the membranes in RO colors depending on
systems (AMTA 2007d) coagulant
FeCly, AICIz, or polyacrylamide Not as great a concern as
mixed in quantities dependent on other chemicals
the ratio of suspended solids
(Cooley et al. 2013; AMTA
2007d).

Strong Cleaning components Effects available ions

acid/base Strong acid (pH 2-3) is applied May not be adjusted to
for a range of “metal oxides, ambient levels before
scales, and inorganic colloids” release

(Mink 2008)

Strong base (pH 11-12) is used
for the “removal of biofilms as
well as organic and inorganic
colloids” (Miink 2008)

Small changes in pH greatly
affect species health
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Appendix C. Overview of the benefits and issues of disposal methods.

Disposal option

Benefits

Issues

Ocean Surface

Water Discharge

e Leading solution
is to discharge the
concentrate into
surface water
bodies (ocean,
lakes, and rivers)

e Common strategy
is to point the
outflow pipes
upward and in a
high flow zone to
blend

River Surface

Water Discharge

e Discharge the
concentrate into
river

Wetland

Application

e Mix concentrate
into a salt tolerant
wetland
ecosystem

e Concentrate
becomes diluted
over a large area,
and then returns
to the sea

e Handle large volumes

e Inexpensive

e Adds volume to
overdrawn rivers

e Slow velocity river
removes some
pollutants with the

sediment settling to

the bottom

e Provides added

volume to production

ecosystem

e Haven’t been
noticeably
detrimental effects,

but long-term effects

are still unknown
(Arizona 2011)

e Discharging to a surface water in the U.S.
requires a National Pollutant Discharge
Elimination System permit (Desalitech 2017)

e Many other locations around the world have
protection laws that are limited, nonexistent,
or unenforced

e Even in ideal conditions, the concentrate can
still be detected hundreds of meters from the
outflow pipe

e Inland disposal locations are typically
freshwater and incompatible for salinity
without blending

e Change in volume seasonally

e Concentrate will have a much greater effect
when there is a low flow in the summer,
rather than becoming more diluted with more
flow in the winter

e Added volume from the discharge to
potentially cause flooding

¢ Velocity, bottom roughness, slope, and the
width of the river affects the transverse
mixing zone of the outfall where species
would be exposed to elevated levels of
concentrate

¢ Any salt added to the system above the
ambient concentration will still raise the
overall salinity, even though it may be
negligible with such a large volume of
receiving water
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Sewer Discharge

¢ Discharge the
concentrate into a
local waste
treatment plant

e Convenient option
and doesn’t require
much energy or extra
costs (Voutchkov
2014)

Deep Well

Injection

e Used to dispose
of liquid waste
deep underground

e Waste is pumped
into the porous
layer.

e Industry preferred
option if available

e Potts explains, “if you
can afford a deep
well, [the permit] is
there for you”

Land Application

e Use the
concentrate as
irrigation water

e Extra source of water
for irrigation
e No waste

Evaporation Pond

e Solid salts remain that
can be collected and
sent to a landfill or
suitable location

e Federal permit is not
needed, but
monitoring may be
mandatory by certain
states (Desalitech
2017)

e Concentrate is
spread out in
shallow ponds

e Large surface area
and shallow depth
allow the solution
to evaporate off
the water

e The volume of waste that a waste treatment
plant will accept is limited, and it also poses
potential damage to equipment of the
treatment plant (Voutchkov 2014)

e Waste must still conform to the requirements
set upon the waste treatment plant
(Desalitech 2017)

¢ Right geological conditions are needed, as
the waste requires a porous layer for
injection under a confined aquifer
(Voutchkov 2014)

e Areas vary greatly (Florida may be 1000m
deep, while Colorado may be 3000m deep),
which greatly alters the cost of construction
and maintenance (John Potts, informal
roundtable discussion, March 10, 2018)

e Requires an EPA permit

e Possible for groundwater to be contaminated
(Voutchkov 2014)

e Need a less saline concentration

e \Whatever toxins are in the concentrate may
accumulate in the soil substrate

e Plant species receiving the application need
to tolerate a saline solution (Arizona 2011)

e Requires large areas of land

e Not a solution for large-scale desalination
plants, as it cannot accommodate the volume
of waste without an enormous size of land
allocated (Voutchkov 2014)

e Possible contamination to groundwater
sources, and a liner to prevent seepage is
needed (VVoutchkov 2014)
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Zero Liquid

Discharge (ZLD)

e Removes all the
liquid in the
process, and the
waste in no longer
a liquid but rather
a solid

Biofuel

Production

e Using the
concentrate as a
substrate for
growing
phytoplankton
algae

e Can be disposed of in
a landfill

e Potential for the
extraction of metals
from the solid
product, which would
provide a resource
from waste

e No ecological
discharge

e Concentrate induces a
stress on the algae,
promoting the
manufacture of lipids
and fatty acids rather
than proteins, which
aids production of
biofuels (Matos et al.
2017)

 Nannochloropsis
gaditana displayed
the greatest salinity
tolerance (Matos et
al. 2017)

e Reiss explains that all current techniques to
remove the last amount of water from the
waste involves heat, which is extremely
costly and resource intensive

e Different algae species have various
tolerances to saline concentrations, so the
species would need to be the right fit for the
concentrate

e Concentrate cannot be the complete substrate
medium, as known substrates need to be
added (Matos et al. 2017)
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Appendix D. Map of Cape Town, ZA with the Diep River (blue) and the Diep Estuary (green)
outlined. A proposed discharge pipeline (yellow) from the location of the Granger Bay
desalination plant to the beginning of the Diep Estuary at a potential outfall discharge point
(orange star). Mouth of Diep Estuary marked where area becomes landlocked in summer (red
bar) (Map courtesy of Google Earth).

38



Afternoon Early Morning
I I I

T T 34

Temperature emperature

<
2 c
3
4
=
W)\ Salinity
psu

Depth (m)

Dissolved Oxygen 11 Dissglveqd'Oxygen

4
0 500 1000 1500 2000 O 500 1000 1500 2000
Distance from Oso Bay (m)

Appendix E. Concentrate movement in distance from Oso Bay displaying temperature, salinity,
and dissolved oxygen differences during afternoon and early morning (Hodges et al. 2011).
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Desalination
Plant

Added intake system

Concentrate leaves the desalination
plant, then blends with water from
the added intake system to dilute the
concentrate. System automatically —7 _=
adjusts intake amount to desired —7
saline concentration for release
through diffusers.

Diffusers

Appendix F. Cross section diagram of a proposed intake system added on an outfall pipe with
diffusers that is discharging into a surface water body.
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