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ABSTRACT  

 Freshwater availability is a growing global concern, and desalination is often presented as 

the solution, but from this important technology comes issues of toxic waste. Ecosystems are 

delicate areas that contain species adapted to that specific location, and any chemical or physical 

changes can disrupt the fitness of species. The concentrate byproduct waste from desalination 

plants is toxic to species if the concentrate is not compatible with the receiving water body. A 

critical review of scientific articles, industry-leading books, conversations with industry experts, 

and information from the American Membrane Technology Association conference was used to 

analyze the current knowledge. Species health and environmental conditions are affected by 

chemical changes, such as an increase in salinity levels, which may be lethal or detrimental to 

growth. Desalination process types determine different chemical concentrations and physical 

characteristics, and depending on the receiving water body, the concentrate needs alteration to be 

compatible with the receiving water body. Solutions vary by location, but possibilities include 

beneficial ecological options that restore habitat water volume, economic benefits that use the 

concentrate, and technical changes that blend the concentrate more effectively in surface water 

outfalls. Identifying the potential ecological issues from concentrate waste and developing 

sustainable practices before harm is caused will protect valuable ecosystems that connect all life 

on earth. 
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ABBREVIATIONS 

AMTA American Membrane Technology Association 

Ar arsenic 

AWWA American Water Works Association 

B boron 

BWRO brackish water reverse osmosis 

oC degree Celsius 

Ca calcium 

CaCO3 calcium carbonate 

Cd cadmium 

CO2 carbon dioxide 

Cr chromium 

Cu copper 

CuSO4
 copper sulfate 

EC electrocoagulation 

Fe iron 

g grams 

H+ hydrogen atom (proton) 

H2O water 

hr hour 

km kilometer 

L liter 

m meter 

Mg magnesium 

mg milligram 

mL milliliter 

Mo molybdenum 

MSF Multistage flash evaporation 

NaCl sodium chloride 

NaClO sodium hypochlorite 
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NaHSO4 sodium bisulfate 

NF nanofiltration 

NH3 ammonia 

Ni nickel 

O2  oxygen 

OrgC organic carbon 

Pd lead 

pH potential of H+ atoms available 

ppt parts per thousand 

RNG renewable natural gas 

RO reverse osmosis 

shock ED shock electrodialysis 

SO4
2-   sulfate 

Sr strontium 

SWRO seawater reverse osmosis 

μL microliters 

W Kendall’s W statistic (Coefficient of Concordance) 

ZLD Zero Liquid Discharge 

Zn zinc 

π=MRT osmotic pressure formula (π = 3.14, M = molarity, R = ideal gas constant, T = 

temperature in Kelvin) 
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INTRODUCTION 

 Many regions in the world take an ample supply of clean freshwater for granted, where 

water has always been available on demand. In contrast, many regions of the world lack the 

minimum requirements for clean water, and some 844 million people worldwide are without an 

available drinking-water service (WHO 2018). Unfortunately, the access to the fresh water 

situation will worsen. An increasing population is stressing water sources, and climate change is 

altering the distribution of the hydrologic cycle, the natural movement of water, to make some 

water sources unreliable (Hagemann et al. 2013). Climate change will warm areas to generate 

more evaporation, and it will reduce rainfall in some areas while increasing it in others 

(Hagemann et al. 2013). In areas predicted to increase in rainfall, tapping into freshwater 

resources is usually not the problem. In contrast, areas that are predicted to decrease in rainfall 

face greater challenges in the global problem of water scarcity. The World Health Organization 

(2018) predicts that by 2025, half of the people on earth will reside in a water-stressed area. 

Water is a vital resource to facilitate life and is used in excess to raise the standard of living. 

Without water, all life ceases to exist. Thus, a reduction in water availability not only makes life 

more difficult, but it may also create conflict to secure such a valuable resource. People need 

water, and a speedy solution is paramount. 

 A leading solution to providing freshwater is with desalination technology, which is the 

process of removing salt from water. There are various processes of desalination that extract 

drinking water from a saline source, such as the sea. With a large amount of the population living 

near the sea, and such a vast resource available, desalination of seawater is an obvious solution. 

Desalination currently only produces about 1% of the freshwater used today, but production will 

double by 2030, and production growth is expected indefinitely (Voutchkov 2016). Currently, 
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there are over 18,000 desalination plants in operation globally that utilize two main processes, 

membranes which separate through pressure, and thermal evaporation that uses heat (Voutchkov 

2016). The energy required for desalination is a limiting economic factor, but the technology has 

proven to be a reliable supply of freshwater to areas in need. 

 Ecological concerns are secondary to providing economically viable water in an 

extremely competitive industry, and the best solution would produce incalculable profits (Villiers 

2000). One of the biggest concerns regarding economic feasibility comes down to energy, and 

desalination requires an enormous amount compared harvesting from a freshwater source. The 

energy difference adds greenhouse gas emissions, and trying to solve a related climate change 

issue, while adding to the cause of climate change, is futile. Therefore, the energy required 

creates another indirect ecological effect which must be considered, but volumes of other 

research address this topic. There are other ecological effects from the process of desalination 

too. The intake system can draw small organisms into the pipe, reducing the bottom of the food 

chain. Membranes need frequent replacement, which adds to landfill waste and resources spent 

on production. Future research about effective solutions to these, and other problems need to be 

addressed, but they are not within the scope of this research.  

 When fresh water is extracted from saline water, the saline water increases in 

concentration. This concentrated saline solution, known as concentrate, is generally of little 

economic or practical use, and it is considered a waste byproduct that needs to be disposed of 

back into the natural environment. Pretreatment chemicals used in the process may also end up in 

the effluent waste stream, which creates an additional problem for disposal. Location is key for 

disposal, and disposal may harm species or degrade the environment. Finding effective solutions 

for concentrate disposal is vital for local and overall ecological health. Therefore, each 
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desalination plant requires a thorough analysis of disposal options, based on numerous factors, 

and this research identifies the issues and presents solutions that minimize ecological harm and 

develops sustainable practices. The issues for decision-makers vary. The private sector may be 

focused on costs, community members desiring water access, activists concerned with 

environmental health, and government officials worried about getting reelected, needing the 

community and the private sectors’ support. With a background in environmental science, and 

through an ecotist lens, which values all species, this research will frame the global issue of 

concentrate disposal from desalination plants on the environment. 
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METHODS  

 A critical literature review was conducted, using electronic database access provided by 

the University of Washington (UWT). Relevant articles that were peer-reviewed and based on 

quantitative analysis provided the strongest supportive evidence. Industry-leading books on 

desalination helped to explain the fine details of the process. In addition, published articles and 

handouts were analyzed from industry leading organizations, such as the American Membrane 

Technology Association (AMTA) and the American Water Works Association (AWWA). Also, 

a case study of Cape Town, South Africa that has turned to desalination was examined, using 

local news sources, organizations, and government websites to evaluate disposal options. 

            Conferences and seminars were attended to support research. The 2017 Northwest 

Climate Conference in Tacoma, WA emphasized changing water availability and adaptation. The 

AMTA and AWWA held a joint annual conference at West Palm Beach, FL in 2018 that 

premiered desalination membrane technology, which provided discussions with industry experts, 

presentations of experiments, and the latest product solutions. At UWT, relevant science 

seminars also provided insight. The collection of knowledge was organized and analyzed. 

            The research was performed over the course of a year through the Global Honors 

Program at UWT. A proposal was submitted, and this was awarded the Bamford Fellowship. 

Funding was provided through the Bamford Fellowship and UWT’s conference and training 

fund. This research was in collaboration with Krystal Hedrick, that studied restoration of water 

resources, and Dr. Elizabeth Bruch that advised the collaborators' research, emphasizing a social 

framework to water access. This research sought to answer the following research questions: 

• How is the concentrated byproduct from desalination affecting ecological systems? 

• How can any harmful ecological effects be reduced or eliminated? 
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DESALINATION: PROCESSES, CONCENTRATE, & DISPOSAL 

Process Types 

 There are two main types of desalination: Membranes and distillation (See Appendix A). 

Both processes need a substantial amount of energy, but they use it in different ways: 

Membranes use pressure, and distillation uses heat. Determining the desalination process 

depends on numerous factors, such as the source water, the amount of potable water needed, 

overall quality desired, energy and chemical availability, and disposal methods available (AMTA 

2007c). These factors then influence what pretreatment is needed, and the concentrate’s salinity 

and physical properties will then reflect the process used. 

 Membrane processes use pressure on a saline solution to diffuse H2O molecules across a 

semipermeable membrane while keeping the salts and contaminants in the feed water. Most 

desalination plants use membrane technology, such as reverse osmosis (RO), nanofiltration (NF), 

microfiltration (MF), ultrafiltration (UF), and electrodialysis (ED). Membrane processes are less 

energy intensive than distillation methods. Each type of membrane uses a different membrane 

permeability, which operates at different pressures, are ideal for various types of source water, 

and have different ranges of permeate recovery amounts (Voutchkov 2014).  

 In a thermal distillation plant, heat is applied to boil saline water, evaporating H2O as 

vapor and then condensing it into liquid water. The thermal energy required is the main 

drawback in economic costs and greenhouse gas emissions. Due to the high cost of energy, these 

systems are common in the Middle East, where oil is abundant. The main distillation methods 

are Multistage flash evaporation (MSF), Multieffect distillation (MED), and Vapor compression 

(VC). Each process produces a quality product, but these systems only get about 25-50% 

recovery rates, the ratio of freshwater extracted (AMTA 2007c). 
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Concentrate Properties 

 The concentrate chemical composition from desalination plants varies at each location, as 

the source water contains its own contaminants. These contaminants may be organic microbes, 

minerals from local geologic substrates, and pollutants from nearby anthropogenic activities, etc. 

Pretreatment chemicals include antifoulants, antiscalants, coagulants, and a strong acid or base 

for cleaning (See Appendix B). The process itself affects the byproduct, such as the saline 

concentration or temperature of the solution, etc. Even the equipment used may add elements to 

the concentrate. Chemicals and physical properties have varying effects on the environment. 

Salinity is the number of salt ions dissolved in a volume of water. The salinity of the concentrate 

depends on the initial source water concentration and the recovery rate of the process type 

(recovery rate % = 
volume of fresh water produced

volume of intake water
× 100) (Voutchkov 2014). While there is a 

technological race to increase recovery rate, generating more valuable fresh water product, a 

higher salinity concentrate is also generated.  

 The salinity and properties of the concentrate dictate how the waste byproduct interacts 

with the environment. The higher concentration of salinity, the higher the density, which causes 

it to sink below a less dense solution. The dense solution sinks to the ocean floor and expands, 

where dispersion mixing decreases with greater depth (Cooley et al. 2013). In contrast, the 

addition of cooling water from MSF lowers the concentration, and therefore lowers the density, 

and with the higher temperature of the discharge, the discharge may float on the receiving water 

surface (Lattemann and Höpner 2003). Changes in temperature affect the amount of dissolved 

oxygen, with higher temperatures containing less oxygen. The temperature change from RO is 

negligible since heat is not applied, but the concentrate may be blended with heated water from 

other industrial processes (Cooley et al. 2013). The main concern of temperature differences is 
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with distillation operations that are heat dependent, and the concentrate may be 10-15oC above 

the receiving water ambience, which is even after being diluted and cooled (Münk 2008). Naser 

(2015) found a difference of 14oC higher than ambience about 400m from an MSF plant. An 

advanced cooling system that reduces the temperature to the same as the receiving water is a 

vital solution when considering a distillation operation. 

 The source water typically undergoes pretreatment to prevent fouling and scaling, which 

is when the membranes get plugged up from contaminants (Voutchkov 2014). Pretreatment 

chemicals depend on the process and source water, and these may remain in the effluent plumes. 

However, advancements of new techniques may greatly reduce the need for pretreatment, such 

as adding an NF membrane, a shock ED, or using electrocoagulation (EC) (Kabarty 2016, Deng 

et al. 2014). Shock ED separates ions with low voltage electricity rather than pressure (Deng et 

al. 2014). EC creates a chemical coagulant from the metal anode, undergoing dissolution and 

hydrolysis reactions, that isolates coagulants in several ways (Kabarty 2016). These electrical 

techniques, if used with renewable power, may be a major technological sustainable solution, 

preventing chemicals in the environment by not using them initially. 

 Naturally occurring metals and compounds of seawater, such as Mg, B, Ca, and SO4
2-, 

that remain in the waste will increase in concentration (Cooley et al. 2013). Furthermore, 

distillation component parts may corrode from seawater, releasing Cu, Zn, and Ni, while 

stainless steel from the RO process releases metals of Fe, Cr, Ni, and Mo (Cooley et al. 2013). 

Alshahri (2017) researched heavy metals in the Arabian Gulf, comparing desalination outfall 

locations to nearby natural locations, and found elevated levels of Cu, Cr, Ar, and Sr, while 

Naser (2015) also found elevated levels of Cu, Cd, Pd, Zn, and NH3
+. 



 

 8 

Disposal Options 

 All desalination plants create a concentrated byproduct that needs a solution for disposal. 

Figuring out a viable disposal option is so critical, that Dr. Robert Reiss of Reiss Engineering 

states, “If you don’t have a concentrate disposal, you don’t have a budget” (informal roundtable 

discussion, March 10, 2018). There are many factors that determine the best disposal option, but 

in most locations, not all options are available. The common ways to dispose of concentrate are 

surface water discharge, sewer disposal, deep well injection, land application, evaporation ponds, 

zero liquid discharge, and some other lesser used methods (See Appendix C). 

 Sometimes there is a lack of disposal options, and other times there are several to choose. 

When more than one option is available, regulations should defer the decision to the least 

environmentally impactful, or if available, one that may benefit the environment. Typically, there 

is an extra cost associated with doing what is best for the environment, and regulations should 

also provide tax incentives to mitigate the difference between options. The initial investment is 

often a challenge to overcome, especially when already investing in a major desalination plant. A 

wetland in Mexico, the Ciénega de Santa Clara, is currently used for concentrate disposal, aiding 

a valuable ecosystem, with no detrimental effects reported (Arizona 2011). All Californian 

desalination plants in development are designing an ocean or estuary disposal (Cooley et al. 

2013). Government assistance for an ecological benefit, such as wetland application or adding to 

an overdrawn river, is more than justified because it also enhances society through recreational 

activities, property values, and environmental health, such as clean air through increased biomass 

production. 
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CASE STUDY: CAPE TOWN, ZA 

 Cape Town, South Africa is a prime example of drought greatly affecting water access. 

Conditions have reached critical levels, and the term Day Zero is known as when Cape Town 

will run out of water. A massive conservation effort has delayed Day Zero till 2019. The 

government has imposed a limit of 50 L/day of water per person (Evans 2018), while an average 

person in the U.S. uses about 340 L/day (USGS 2018). Michael Kiparsky, a director of the 

Wheeler Water Institute at UC Berkeley, proclaims the situation of, “Cape Town as a warning 

shot for us. What we can see is that it's very possible for water crises, which emerge all the time 

around the world, to get close to the point of real, massive human disaster” (Simon 2018).  

 The solution has been a rush to build at least seven SWRO desalination plants, which will 

generate 2.0x108 L/day by July 2018 (The Source 2018), but this falls well short of a city that 

had used 1.1x109 L/day (Simon 2018). The plants are designed to use diffusers on the outfall 

(The Source 2018), but disposal is an expensive part of construction costs, so the diffuser option 

may be neglected in a rush to get water now and to keep costs down. In addition, modeling 

analysis and due process are discounted in such situations. Relying only on desalination will not 

be sufficient, and Cape Town is an example of a place needing to diversify its water sources, 

because as Lesley Green of the University of Cape Town states, “It doesn't make sense to me to 

solve one ecological problem by creating a whole lot more” (Simon 2018). A difficult situation is 

compounded by poor planning and resource use, potentially harming valuable ecosystems. 

 Cape Town is in the middle of the west coast region, and there are two marine bioregions 

near the shore of Cape Town (Agulhas, South-western Cape) (Griffiths et al. 2010). The seven 

desalination plants around Cape Town will dispose into either bioregion. The western coastline is 

shallow, and vast research has identified the west coast with the greatest richness of species 
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because 83% of all marine species are found in less than 100m depth (Griffiths et al. 2010). The 

northward current from Antarctica is frigid, which will require greater osmotic pressure, and 

therefore, more energy for desalination, as temperature is a variable in osmotic pressure 

(π=MRT) (Swartz et al. 2006). Highlighting source water challenges, the high winds in the area 

cause up-welling of nutrients, making the water quality not consistent, and this will require 

higher amounts of chemicals to prevent fouling, while the south and east coast has warmer 

temperatures and fewer nutrient levels (Swartz et al. 2006). Unfortunately, Cape Town’s location 

prevents harvesting from a more reliable and less expensive to process source water, with 

mountains and distance between this better source water providing too great an obstacle. 

 Disposal using diffusers still has an ecological effect, and there are regulations in Cape 

Town that monitor water industry development (Swartz et al. 2006). About 23% of the coast in 

South Africa is considered a protected area, but there is minimal enforcement from the 

government to protect the marine areas, and only 9% of the protected area receives full 

enforcement (Griffiths et al. 2010). Instead of ocean discharge, Cape Town could use wetland 

application. Most of the 343 estuaries in South Africa are on the east coast, and the remaining 51 

estuaries on the west coast are too far from Cape Town, except for the Diep estuary (Griffiths et 

al. 2010). Desalination plants on the northern side of the city (Granger Bay, Hout Bay) could 

consider discharge into the Diep estuary to support a vital habitat. The Diep River flows through 

the estuary and into the sea in the winter, but in summer the river runs dry due to low rainfall, 

and the estuary becomes landlocked and hypersaline (Milgard and Scott 2010). Even though the 

Diep estuary is seasonal, the natural hypersalinity by evaporation makes this a potential fit to 

support species year-round, connecting the estuary back to the ocean, especially with more than 

one plant discharging into the estuary (See Appendix D).  
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ECOLOGICAL EFFECTS 

How is the concentrated byproduct from desalination affecting ecological systems? 

Ecological effects range from anything that reduces at least one individual species fitness 

to interactions on a global scale (Molles 2016). While change is constant, typically, change 

happens very slowly in the natural world, such as geologic creations of mountains or 

evolutionary shifts. Species have evolved over a long period of time, under relatively stable 

conditions, which has helped species to fulfill certain niches in the food web or location (Molles 

2016). Ecologic systems are highly integrated and full of complex interactions. Most studies 

have found negative impacts to environmental conditions from desalination plants (Cooley et al. 

2013), and this may come from pollution through pH differences, how the concentrate flows, 

heavy metals, and deoxygenation, all of which can influence species and overall diversity. 

Chemical Factors 

pH 

pH is the potential of H+ atoms available, ranging on a scale of 0 (acidic) to 14 (alkaline), 

and can be found using either (pH = - log [H+]) or ([H+] = 10-pH). The pH of intake water is often 

manipulated to make the desalination process more effective when certain particles or 

temperatures are encountered, such as increasing the pH to 10-11 to make the rejection of boron 

easier when water temperatures are high (Voutchkov 2014). Before the concentrate is released, 

the pH is usually adjusted to match the water body (Voutchkov 2014), but it may not be in all 

locations, nor exactly match the ambient when adjusted. Even a slight pH difference will 

generate different chemical concentrations that species may be temporarily or constantly 

subjected to in the outfall location. The ocean has a stable overall pH of 8.1 today, which is 
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down from a historic level of 8.2 due to ocean acidification (NG 2017). Since pH is a log scale, 

the lowering of 0.1 pH is a 25% difference in H+ ions (NG 2017). Even this pH change is well 

known to have detrimental effects on species because required ions, such as calcium from 

CaCO3 for building shells, are not as readily available (NG 2017). Therefore, the pH differences 

of concentrate versus the sea represent a problem for species, both in available required chemical 

compounds, but also in toxic compounds that may be present in much greater concentrations 

than species have adapted to biologically process.  

Concentrate Movement 

When emitting the waste back into the ocean, diffusers mix and spread out the waste 

more equally than emitting from a single point source (Cooley et al. 2013). Developers are 

increasing diffusers into the design of new desalination plants globally (Cooley et al. 2013). 

Blending the waste helps flora and fauna not be exposed to high concentrations of pollutants that 

could be detrimental to species’ health. Despite the benefit from diffusers blending the waste, the 

concentrate will still create a plume and sink to the ocean floor and expand (See Appendix E). 

There also remains a possibility of any contaminants in the waste accumulating in the sediment. 

The toxins that are emitted may not be biodegradable. Toxins may remain in the environment 

and could eventually elevate in concentrations unhealthy to flora and fauna species.  

In Australia, an experiment to determine concentrate movement put dye into the waste. 

The concentrate was witnessed to initially rise as it exited upward, but then sank towards the 

seafloor and expanded outward of up to 1.5km (Khan 2007). The concentrate can fill up channels 

and reduces mixing, causing stratification (Khan 2007). 

Reiss explains that deoxygenation does not usually occur in the desalination process, 

except in the case with excess sodium bisulfite added to remove free chlorine (See Appendix B). 



 

 13 

Whatever oxygen content the source water contained remains in the concentrate. However, it is 

the stratification of layers that causes deoxygenation because O2 is used in respiration by species, 

and the prevention of vertical mixing does not allow the replenishment of O2. The source water 

may contain rich amounts of organic carbon material, which gets digested in organisms and 

released as CO2 gas (OrgC + O2 ⇌ CO2 + H2O) (Hemond and Fechner 2015). Low dissolved O2 

levels have been detected in proximity to outfalls in shallow bays, such as in Perth, AU (Cooley 

et al. 2013). Also, the new constant flow of organic material may cause a bacterial bloom, with 

the respiration consuming O2 in the process, and depleting the available O2 for species naturally 

present.  

Temperature differences can greatly affect the species within an ecosystem. The 

ecological effect of temperature may change seasonally: A temperature increase in winter may 

allow species growth, while summer increases are undesired since water temperatures are 

already elevated (Münk 2008). However, depending on the receiving water, such as in rivers and 

lakes, species growth in the winter may not be desired, especially when considering that cold 

winter temperatures reduce mosquitos that carry pathogens. 

Heavy Metals 

Heavy metals are a potent type of toxic pollutant that will not break down. Another 

concern is that the heavy metals undergo speciation, that is, an element, such as copper (Cu2+), 

will immediately react with H2O to create different hydrolysis compounds, such as Cu(OH)2, 

CuOH+, Cu(OH)3
-, Cu(OH)4

2+, and Cu2(OH)2
2- (Jensen 2003). The presence of CO2(g) products, 

such as carbonic acid (H2CO3(aq)), also reacts with copper to form CuCO3, Cu(CO3)2
2-, along 

with even more compound products (Jensen 2003). For example, CuSO4 is commonly used in 

RO, and the soluble CuSO4 compound undergoes hydrolysis reactions, resulting in the many 
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copper products mentioned above (Matavos-Aramyan et al. 2017). Copper has a low toxicity to 

species, but it will accumulate, and the higher levels from bioaccumulation will negatively affect 

species (Chadha 2015). Depending on the pH of the system, the concentrations of each species 

product can be calculated. However, the copper example provides an insight into the 

complexities of heavy metal pollution. Each chemical product has varying degrees of tissue 

absorption and effects on a species. Therefore, the number of chemical products and specific 

species responses is vast and is beyond the scope of this research. 

In the Arabian Gulf, research by Alshahri (2017) studied the concentrations of heavy 

metals near outtake areas from desalination plants. The data was compared to similar areas in the 

Gulf, and to standard levels of shale, which is the common local geographic substrate (Alshahri 

2017). That research provides strong support for pollution from an anthropogenic source. Heavy 

metals may be introduced from the metallic parts in the process (Alshahri 2017). Heavy metals 

can be very toxic to fauna, causing “reduced growth, development, cancer, organ damage, 

nervous system damage, and, in extreme cases, death” (Ogoyi et al. 2011). In flora, heavy 

metals, such as copper, have also shown reduced growth and lower survival rates (Hanley 2017). 

One effect that is predictable is the bioaccumulation of toxins through trophic levels, where 

toxins in water transfer to lipid cells (Molles 2016). In a polluted environment, the primary 

producers (plants) absorb some toxins into their tissue, and then the primary consumers eat the 

toxic tissues, accumulating a greater concentration within the consumer’s tissue (Molles 2016). 

At the next trophic level, the secondary consumers feed upon the primary consumers, increasing 

the toxin concentration (Molles 2016). Each trophic level increases the concentration of toxins 

within the species, leading to acute or chronic toxicity effects (Cooley et al. 2013). An example 

of this is the commonly known problem of mercury in seafood. The toxic heavy metal mercury 
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bioaccumulates through each trophic level, increasing in concentrations that becomes harmful for 

top consumers to eat. 

Biological Factors 

Species Diversity 

Some species are specialized in their niches, while others are more general. Removing a 

single species can have a cascade effect though the food web, either benefiting some or harming 

others (Molles 2016). Species richness, the amount of species present, and species evenness, how 

balanced each species is to each other, are calculated to give a diversity score, known as the 

Shannon-Wiener Index. The Shannon-Wiener Index provides a useful score to grade diversity 

and allows the effects of concentrate on species to be easily compared. Despite useful tools 

available for comparison, a challenge with determining ecological effects stems from the lack of 

data of pre-waste disposal in areas affected (Cooley et al. 2013). Additional challenges to 

knowing the full effects come from studies that are focused on the short term, rather than the 

long-term possibility of acute and chronic toxicity (Cooley et al. 2013).  

An experiment by Peterson et al. (2016) showed a significant difference in species 

richness near the outflow compared to the inflow (Chi2-test, 187, df=6, p=0.001). In research by 

Jenkins et al. (2012), some species may be harmed by only 2-3 ppt salinity change, while other 

species are more fit to salinity changes. Changes in environmental conditions, such as pollution, 

or in the species present can greatly affect the food web. Species have life development stages 

that are vulnerable at each stage, and a disruption in one stage can greatly affect the future of the 

species (Molles 2016). Often, it is the smaller organisms that are first affected, and if their 

numbers are reduced, then the organisms that feed upon them are reduced (Molles 2016). 

However, the food web is so complex, that many effects are not predictable. 
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Microbes 

 The diversity of species is less in extreme environments, as these conditions are often for 

species that are fit for specialized niches. Microbes have been found in the harshest of 

environments. Microbes are the quickest to respond to unfavorable conditions, and a study by 

Van der Merwe et al. (2014) examined the differences in microbial diversity between RO outfall 

locations and ambient locations. The outfall point displayed the least number of microbes, and 

the trend showed an increase in microbe quantity with greater distance from the outfall (Van der 

Merwe et al. 2014). While the researchers conclude the differences not to be drastic, they 

recognize the limit of their study and recommend pyrosequencing as being necessary to 

determine species richness and evenness of microbes (Van der Merwe et al. 2014). The study is 

also limited in determining the type of microbes, as various microbes have a range of ecological 

benefits. The SWRO desalination plant used a common chlorination of NaClO weekly (10 mg/L 

for 2-3 hr), and then NaHSO4 to de-chlorinate (0.3-0.5 mg/L), along with consistent use of 

phosphonate as an antiscalant (3-5 mg/L) (Van der Merwe et al. 2014). The RO process and 

chemicals killed all phytoplankton and almost all the bacteria, but 2 events/μL of bacteria were 

detected in the concentrate compared to 473 events/μL in the feed water (Van der Merwe et al. 

2014). The small number of bacteria that survive provide a constant propagule pressure of 

species, considering that they have an advantage in the changed environment and may come 

from an intake some distance away. The few microbes that survive may drastically reduce the 

richness and evenness by dominating the new environment. The data does support an effect of 

mortality on microbe quantity from the concentrate. 
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Marine Benthos 

Marine benthos is those species inhabiting the seafloor. In a study comparing concentrate 

effects in Bahrain by Naser (2015), there was a significant difference in the macrobenthic 

community between an MSF and RO plant of similar ecosystems. In the MSF area, 371 

individuals of 43 species were identified for a Shannon-Wiener diversity score of 1.5±0.4, while 

in the RO area, 1403 individuals of 63 species were identified for a Shannon-Wiener diversity 

score of 2.3±0.2 (Naser 2015). The variance in the species community between the locations was 

also significant using a non-metric multidimensional scaling analysis (ANISOM: R=0.541, 

P=0.001) (Naser 2015). A W statistic measuring disturbance displayed a trend of greater 

disturbance in the MSF area (Naser 2015). Indicator species are useful for determining 

environmental conditions. Polychaete species, an annelid worm, are often used as an indicator 

(Giangrande et al. 2005), and presence of these species indicate organic-rich conditions that stem 

from sewage or oil outfalls (Carregosa et al. 2014). In both RO and MSF locations, polychaetes 

were the most abundant (Naser 2015), indicating poor overall environmental conditions in both 

locations.  

There are a variety of marine ecosystems, such as seagrass and coral reefs, that provide 

an important habitat for marine species, renewable sustenance, and shelter for numerous species 

(Naser 2015). The study by Peterson et al. (2016) found larger sand grain sizes due to the higher 

flow from the outtake. A high rate of flow washes away the smaller grain sizes of sand. Flora and 

fauna species rely on certain sediment conditions during their life cycle. A slow rate of outflow 

could reduce washing away grain sizes. Maintaining environmental habitats is crucial to 

maintaining species presence.   
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DISCUSSION 

How can any harmful ecological effects be reduced or eliminated? 

 The greatest potential for ecological effects of concentrate discharge occur in surface 

water discharge. Thus, mitigating these effects is of the greatest concern. In a sustainable 

solution, there is no detrimental change in environmental conditions. Blending the discharge to 

match salinity, temperature, pH, and dissolved oxygen of the receiving water, while not 

introducing new pollutants, needs to be the design standard of all plants. Salinity may be 

matched by blending with other effluents, such as the stream after a waste treatment plant. 

Temperature differences require greater cooling system designs before releasing the waste. pH 

can be closely monitored and adjusted, with improved systems using little to no acids or bases in 

the cleaning process. Dissolved oxygen changes may be prevented with close free chlorine 

monitoring, as well as screening of organic carbon sources to prevent byproduct reactions from 

consuming O2. All aquatic management should be performed in a synthetic system prior to 

outfall release, and therefore, the most minimal impact to species and the ecological system 

occurs. To achieve the desired results, quantifiable research is needed to advance designs with 

room for improvement. 

 There is no perfect desalination plant that fits all areas and complexities. There are 

certain aspects of the desalination process that apply to all scenarios. The location of the plant 

should play a prominent role in determining the disposal method. The concentrate from each 

process and chemical additives to counter source water conditions results in a range of 

chemically variable concentrates, and this must be considered for disposal. The key questions to 

consider when disposing into natural water systems are: Is the environment appropriate for the 

discharge, and is the wastewater compatible for the environment? Those are the central guiding 
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questions for every situation concerning disposal. For example, freshwater may seem suitable to 

dispose of anywhere, but freshwater is toxic to organisms in saline environments, and vice versa. 

Organisms have evolved to exist in the conditions of their habitat. Co-discharge, where 

concentrate and effluent waste is blended together to make a solution comparable to ocean water 

or freshwater, depends on the concentrations of the receiving water body. Co-discharge is not 

common, but some large-scale plants use this practice, such as in Barcelona and Japan, but co-

discharge is a likely waste solution for a quarter of new plants in California (Cooley et al. 2013). 

The following guidelines will help to mitigate more costs onto the environment. 

 The recovery rate is not important if a large volume of source water is available, such as 

the ocean. While it would require more volume to withdraw, the lower recovery means a less 

saline concentrate that would be easier to dispose of back into to the ocean. While the 

technological focus is on efficiency and getting more squeeze out of the source, that may not be 

the ideal environmental solution. When needing to make the concentrate compatible with the 

receiving water, more water would be required to dilute the concentrate. 

 New technology should focus on designing desalination systems with minimal chemical 

additives which would prevent such chemicals emitted into the environment. The design ties 

back to the source water, as each site has a unique water chemistry that must be managed. In 

addition, the desalination plant needs proven products that do not leech metals, especially with 

distillation processes. Furthermore, newer methods for pretreatment, such as electrocoagulation, 

should be the pursuit of research. Another focus of the industry should be on redesigning the 

material of the membranes to prevent many of the fouling and scaling problems. 

 Desalination adds to climate change through greenhouse gases, which is a reason for the 

need of more water. Releasing carbon into the atmosphere from a stored source in a linear 
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system is unsustainable and contributes to climate change. First, the energy needed to desalinate 

water needs to come from renewable and nonpolluting sources, such as solar, wind, or wave 

energy. Since plants may be regionally isolated, the power needed could be supplied without 

requiring the infrastructure connection to the electrical grid. Emerging technologies are 

developing renewable natural gas (RNG), which is methane obtained from biomass. When used 

with RNG, technology from EFD Corp. is promising. There are also situations where the 

desalination plant is located next to a power plant or other water user that heats water in its 

production, and that preheated water can be the intake supply, reducing the energy needed. 

However, as Spaetzel (2018) explained during a conference talk, the water from power plants is 

often unpredictable, as chemicals may have been added from the source plant, through cleaning 

or other means. The unpredictability can be solved by better communication and partnership 

between the source plant and the desalination plant. Perhaps the power plant needs a chemical 

additive for cleaning, but then communicates this to the water plant, and the necessary duration 

of contaminated water can be diverted. 

 Using the concentrate to produce biofuel is a direct benefit for society, as well as it will 

not add to environmental degradation. This solution may work for a variety of locations, in open 

ponds if quick evaporation is not an issue, or perhaps within closed containers in arid locations. 

Available land is an issue, along with an infrastructure in place to support biomass production, 

but this solution will absorb CO2 and use carbon in a cyclical loop. 

 Evaporation ponds do have the benefit of creating a beneficial product, as this salt can be 

used as a de-icing agent on roads in freezing locations (Desalitech 2017). This is a low-tech 

solution that works in arid regions, such as the southwest U.S. and the Middle East. Humid 

regions, such as Florida, would not work because evaporation rates are slower. 
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 ZLD offers perhaps the easiest of all disposal solutions in a trip to a landfill facility, but 

endless trips to the landfill is not a sustainable solution. However, if transport vehicles did not 

emit CO2, then this solution is acceptable. It is possible to extract metals from the solid which 

provides an economic benefit, but as each site has a different water source, the product will also 

produce elements present from the source. For example, limestone is prevalent in Florida, so a 

high quantity of calcium will present, but a high amount of magnesium will also be included 

since magnesium is a suitable substitute for calcium in limestone. Note that limestone could be 

either calcite or aragonite. Both minerals are considered CaCO3, but they differ in their 

molecular structure, and the compact structure of aragonite allows for more substitution of 

magnesium for calcium, adding to the complexity of what to expect in the product (Klein and 

Philpotts 2017).   

 Wetland applications may be the best ecological solution, as it may directly benefit an 

ecosystem. It may even be possible to build such an ecosystem in areas with little ecosystem 

activity, such as an open desert, supporting one of the most important beneficial habitats, and the 

concentrate can provide the source of water (Arizona 2011). However, natural environment 

applications need to be concerned with areas that are seasonal, as no movement of water will not 

mix nor dilute the concentrate for proper disposal. 

 There are additional disposal challenges, as Reiss explains an impossible discharge 

scenario is one with a source water that is already contaminated. For example, source water from 

a tech industry may contain various amounts of toxic metals unsafe for disposal. Those 

contaminates will not only remain in the concentrate, but it then becomes more concentrated. 

Adding another challenge to disposal is the shifting of source water extraction. Utility companies 

will extract water from the least expensive source, such as a near-surface aquifer, as utilities used 
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to extract from in Florida. However, this source became overdrawn and no longer viable, so the 

next least expensive source was used, a deeper brackish water aquifer. Now there is a source 

water with much different chemistry that will have a more saline concentrate that cannot be 

disposed of in the same manner as the previous source. 

  Modeling is recommended to determine concentrate movement and ideal placement of 

the outfall. Specific location placement of outfalls in places of “sub-tidal, off-shore environments 

with persistent turbulent flow” will help dispersion (Roberts et al. 2010). Currently, blending of 

the concentrate into ocean outfalls is optimized at 30-45o angles of discharge (Roberts et al. 

2010), but new diffuser designs can greatly enhance the blending with surface water discharge, 

especially an economic option that new and old plants can add. 

 A solution that may reduce or eliminate surface water discharge issues is developing an 

outfall system that includes an intake (See Appendix F). The added intake would blend the 

concentrate before release into the water body. While this would not reach ambient salinity, a 50-

50 blend of ocean water and concentrate halves the salinity (e.g. 35g NaCl/L of seawater plus 

70g NaCl/L of concentrate (assuming 50% recovery rate) equals a 53g NaCl/L discharge). A 

second intake system would lower it to near ambient levels (e.g. 35g NaCl/L of seawater plus 53 

NaCl/L equals a 44g NaCl/L discharge). An electronic monitoring system can automatically 

adjust blending amounts. A diffuser emitting the lower saline concentrate would sufficiently 

blend the discharge. Field studies are needed to determine effectiveness. This solution would 

require added economic costs, but this would negate any harmful ecological effects. 

Further Sustainable Considerations 

 Economic considerations drive development within the desalination industry. Ecological 

consideration is made, but it is not the driving factor to technological advancement. While these 
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topics may not be exclusive, such as limiting chemical use saves money and reduces pollutants, 

the value of environmental capital is not fully embraced. As a pillar of sustainability, it is the 

environmental capital that all economic capital draws from, and not reinvesting in the 

environment leads to economic bankruptcy. 

 Desalination raises many questions of social access to water. Yes, potable water is 

created, but for whom? The higher economic cost to produce water by desalination means better 

access for the higher economic status individuals. Many do not have running water, and without 

investment into distribution infrastructure, then water access remains divided. Who are the 

decision makers guiding the projects, and is the project focused on economic gain or water 

availability? Collaboration between policy makers, developers, and the community is key for 

equal water access to all, and early on everyone should be involved. Desalination concentrate 

disposal is complex, and hopefully this research helps everyone from policy-makers, average 

citizens, and to those in the industry better understand the ecological effects and solutions to 

concentrate disposal.  

 Future studies should investigate species that are near outfalls and the bioaccumulation of 

relevant toxins. Continuing the research and development of diffusers is critical. Studies should 

also focus on the factors of concentrate plume size, temperature, and concentration; Identifying 

what is the greater impact will allow for the most detrimental effects to be minimized or 

eliminated. 

 In conclusion, a long-term solution is reducing the amount of water used and restoration 

of natural water systems. More efficient technology, better storage, personal choices, and taxes 

are some ways that will prevent water being needlessly lost, as cheap water does not generate 

efficient designs (Villiers 2000). Efficient technology is available and continues to be developed, 
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but it needs to replace current inefficient systems. Storage of the water resource when it becomes 

naturally available would help during dry times. Perhaps the best solution is to remove subsidies 

and limit water usage from industries that consume vast amounts of water, including fining those 

responsible for water pollution, such as the meat and dairy industry, which uses around 55% of 

all freshwater resources and causes most water pollution (PETA 2018). Choice in diet has an 

enormous water usage difference. Accurate costs of products will generate change, and 

individuals can make a difference by choosing a vegan diet to save over 4000 L/day of water 

(PETA 2018). Desalination is a great technology, but it is very energy intensive and can cause 

environmental harm, so limiting the need is more important than relying on more production. 

Sustainability needs to be at the forefront of decisions, because tomorrow will soon be today, and 

carefully planted seeds will bear continuous fruit, or neglect will bear depravity. 
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APPENDIX 

Appendix A. Overview of desalination processes. For detailed parameters, including pressure, 

flux, and rejection percentage, see Voutchkov (2014). 

Process type Notes 

Membrane 

 

 

SWRO 

(seawater RO 

~35,000 mg/L) 

• Higher pressure is needed to counter the natural osmotic diffusion 

• Membrane permeate flux of SWRO is less than BWRO (Voutchkov 2014) 

• Concentrate from SWRO ranges from 1.5-2 times more concentrated than 

the source water 

BWRO 

(brackish water 

400-10,000 

mg/L) 

• BWRO waste ranges from 2.5-5 times more concentrated (Voutchkov 

2014). 

• Less expensive than seawater 

NF • Used when source waters are less saline but contains high color, 

hardwater, or organic content, and will block cysts and viruses 

• Not used exclusively (AMTA 2007a) 

MF • Used when feed sources contain microbial and turbidity contaminants 

(AMTA 2007b) 

UF • Used when feed sources contain microbial and turbidity contaminants 

(AMTA 2007b) 

ED • Utilizes electrochemical properties, where anion and cation membranes 

separate the salt ions from water 

Shock ED • Emerging technique developed by researchers at MIT 

• Rather than pressure through a membrane, shock ED runs water over a 

membrane with a low voltage electric charge applied (Deng et al. 2014) 

• Cations and anions are oppositely directed by the charge and out through 

the membrane (Deng et al. 2014). 

• Overall electricity needed is less than traditional RO processes 

• Need for cleaning chemicals that clog membranes may be greatly reduced 

Distillation  

MSF • uses electricity and a thermal source 

MED • uses electricity and a thermal source 

VC • only requires electricity, as the compression of a gas generates heat 

(AMTA 2007c) 

VC (EFD 

Corp.) 
• combined proven technologies of VC and spray drying 

• produces a crystallized salt (no liquid waste) 

• proposes the salt can be sold as a product 

• process uses natural gas, but that is available from a fossil fuel 
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Appendix B. Overview of pretreatment chemical additives. 

Pretreatment Use Concern 

Antifoulants • Used to prevent fouling of the 

membranes, usually in RO and 

MSF processes (AMTA 2007c) 

• May also require the use of, 

“biocides, anti-foaming 

additives, and detergents” 

(Cooley et al. 2013) 

• May contain free chlorine 

• Chlorine ion generates 

halogenated products 

• To remove chlorine, sodium 

bisulfite (NaHSO3) is added 

• Excess sodium bisulfite may 

also deoxygenate the water  

SO3
2- +  O2 → SO4

2- 

• Trace amounts of these 

chemicals may be harmful 

to marine species (Cooley et 

al. 2013) 

Antiscalants • Prevent scaling, which are 

deposits from minerals on the 

membranes (Voutchkov 2014) 

• For BWRO, sulfuric acid 

(H2SO4) is added as an anti-

scalant (Voutchkov 2014) 

• Do not biodegrade well, 

their effects are not well 

known, and therefore they 

continue to accumulate in 

the environment and in 

species (Chadha 2015) 

Coagulants • Help remove the suspended 

solids from the feed water that 

may clog the membranes in RO 

systems (AMTA 2007d) 

• FeCl2, AlCl3, or polyacrylamide 

mixed in quantities dependent on 

the ratio of suspended solids 

(Cooley et al. 2013; AMTA 

2007d). 

• Overdosing can cause 

discoloration to various 

colors depending on 

coagulant 

• Not as great a concern as 

other chemicals 

Strong 

acid/base 

• Cleaning components 

• Strong acid (pH 2-3) is applied 

for a range of “metal oxides, 

scales, and inorganic colloids” 

(Münk 2008) 

• Strong base (pH 11-12) is used 

for the “removal of biofilms as 

well as organic and inorganic 

colloids” (Münk 2008) 

• Effects available ions 

• May not be adjusted to 

ambient levels before 

release 

• Small changes in pH greatly 

affect species health 
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Appendix C. Overview of the benefits and issues of disposal methods. 

Disposal option Benefits Issues 

Ocean Surface 

Water Discharge 

  

• Leading solution 

is to discharge the 

concentrate into 

surface water 

bodies (ocean, 

lakes, and rivers) 

• Common strategy 

is to point the 

outflow pipes 

upward and in a 

high flow zone to 

blend 

• Handle large volumes 

• Inexpensive 

• Discharging to a surface water in the U.S. 

requires a National Pollutant Discharge 

Elimination System permit (Desalitech 2017) 

• Many other locations around the world have 

protection laws that are limited, nonexistent, 

or unenforced 

• Even in ideal conditions, the concentrate can 

still be detected hundreds of meters from the 

outflow pipe 

• Inland disposal locations are typically 

freshwater and incompatible for salinity 

without blending 

River Surface 

Water Discharge 

  

• Discharge the 

concentrate into 

river 

• Adds volume to 

overdrawn rivers 

• Slow velocity river 

removes some 

pollutants with the 

sediment settling to 

the bottom 

• Change in volume seasonally 

• Concentrate will have a much greater effect 

when there is a low flow in the summer, 

rather than becoming more diluted with more 

flow in the winter 

• Added volume from the discharge to 

potentially cause flooding 

• Velocity, bottom roughness, slope, and the 

width of the river affects the transverse 

mixing zone of the outfall where species 

would be exposed to elevated levels of 

concentrate 

Wetland 

Application 

  

• Mix concentrate 

into a salt tolerant 

wetland 

ecosystem 

• Concentrate 

becomes diluted 

over a large area, 

and then returns 

to the sea 

• Provides added 

volume to production 

ecosystem 

• Haven’t been 

noticeably 

detrimental effects, 

but long-term effects 

are still unknown 

(Arizona 2011) 

• Any salt added to the system above the 

ambient concentration will still raise the 

overall salinity, even though it may be 

negligible with such a large volume of 

receiving water 
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Sewer Discharge   

• Discharge the 

concentrate into a 

local waste 

treatment plant 

• Convenient option 

and doesn’t require 

much energy or extra 

costs (Voutchkov 

2014) 

• The volume of waste that a waste treatment 

plant will accept is limited, and it also poses 

potential damage to equipment of the 

treatment plant (Voutchkov 2014) 

• Waste must still conform to the requirements 

set upon the waste treatment plant 

(Desalitech 2017) 

Deep Well 

Injection 

  

• Used to dispose 

of liquid waste 

deep underground 

• Waste is pumped 

into the porous 

layer. 

• Industry preferred 

option if available 

• Potts explains, “if you 

can afford a deep 

well, [the permit] is 

there for you” 

• Right geological conditions are needed, as 

the waste requires a porous layer for 

injection under a confined aquifer 

(Voutchkov 2014) 

• Areas vary greatly (Florida may be 1000m 

deep, while Colorado may be 3000m deep), 

which greatly alters the cost of construction 

and maintenance (John Potts, informal 

roundtable discussion, March 10, 2018) 

• Requires an EPA permit 

• Possible for groundwater to be contaminated 

(Voutchkov 2014) 

Land Application   

• Use the 

concentrate as 

irrigation water 

• Extra source of water 

for irrigation 

• No waste 

• Need a less saline concentration 

• Whatever toxins are in the concentrate may 

accumulate in the soil substrate 

• Plant species receiving the application need 

to tolerate a saline solution (Arizona 2011) 

Evaporation Pond   

• Concentrate is 

spread out in 

shallow ponds 

• Large surface area 

and shallow depth 

allow the solution 

to evaporate off 

the water 

• Solid salts remain that 

can be collected and 

sent to a landfill or 

suitable location 

• Federal permit is not 

needed, but 

monitoring may be 

mandatory by certain 

states (Desalitech 

2017) 

 

 

• Requires large areas of land  

• Not a solution for large-scale desalination 

plants, as it cannot accommodate the volume 

of waste without an enormous size of land 

allocated (Voutchkov 2014) 

• Possible contamination to groundwater 

sources, and a liner to prevent seepage is 

needed (Voutchkov 2014) 
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Zero Liquid 

Discharge (ZLD) 
  

• Removes all the 

liquid in the 

process, and the 

waste in no longer 

a liquid but rather 

a solid 

• Can be disposed of in 

a landfill 

• Potential for the 

extraction of metals 

from the solid 

product, which would 

provide a resource 

from waste 

• No ecological 

discharge 

• Reiss explains that all current techniques to 

remove the last amount of water from the 

waste involves heat, which is extremely 

costly and resource intensive 

Biofuel 

Production 
  

• Using the 

concentrate as a 

substrate for 

growing 

phytoplankton 

algae 

• Concentrate induces a 

stress on the algae, 

promoting the 

manufacture of lipids 

and fatty acids rather 

than proteins, which 

aids production of 

biofuels (Matos et al. 

2017) 

• Nannochloropsis 

gaditana displayed 

the greatest salinity 

tolerance (Matos et 

al. 2017) 

• Different algae species have various 

tolerances to saline concentrations, so the 

species would need to be the right fit for the 

concentrate 

• Concentrate cannot be the complete substrate 

medium, as known substrates need to be 

added (Matos et al. 2017) 
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Appendix D. Map of Cape Town, ZA with the Diep River (blue) and the Diep Estuary (green) 

outlined. A proposed discharge pipeline (yellow) from the location of the Granger Bay 

desalination plant to the beginning of the Diep Estuary at a potential outfall discharge point 

(orange star). Mouth of Diep Estuary marked where area becomes landlocked in summer (red 

bar) (Map courtesy of Google Earth).  
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Appendix E. Concentrate movement in distance from Oso Bay displaying temperature, salinity, 

and dissolved oxygen differences during afternoon and early morning (Hodges et al. 2011). 
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Appendix F. Cross section diagram of a proposed intake system added on an outfall pipe with 

diffusers that is discharging into a surface water body. 

 

Concentrate leaves the desalination 

plant, then blends with water from 

the added intake system to dilute the 

concentrate. System automatically 

adjusts intake amount to desired 

saline concentration for release 

through diffusers.  
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