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PHYSICAL REVIEW A, VOLUME 64, 042311
Improving quantum secret-sharing schemes

Anderson C. A. Nascimento, Joern Mueller-Quade, and Hideki Imai
Third Department, Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
(Received 21 February 2001; published 17 September)2001

We propose a protocol that enables a dealer to share a quantum secretplatyers using less than
guantum shares for several access structures. For threshold schemes we derived an expression that shows how
many quantum shares can be saved in this scheme. Also, several features that are available for classical
secret-sharing schemémnd previously not known to be possible for quantum secret-shdrempme available
with this protocol.

DOI: 10.1103/PhysRevA.64.042311 PACS nuntber03.67.Dd

[. INTRODUCTION schemes is the amount of data that must be given to the set of
layers. The smaller the amount of data given to the set of
ayers the better. This issue becomes even more important

Shamir[1] and Blakley[2] in 1979. They are fundamental o gealing with quantum secret sharing. As quantum data
building blocks of multiparty computation protocdB], un- g expansive and hard to deal with, it would be desirable to

conditionally secure key distributiofd], digital signature se a5 little quantum data as possible in order to share an
scheme$5], as well as of key management scherff@sina  ynknown quantum state. In this paper we show that quantum
classical secret-sharing scheme, a dealer shares a secretdifa and classical data can be used together in a hybrid quan-
distributing pieces of information among a set of players in &aum secret-sharing scheme in order to reduce the amount of
way, that only authorized subsets of the players’ set will bequantum data that has to be distributed to the players. As
able to recover the secret. Recently, this concept was genettassical data is much easier to store, transmit, and receive,
alized to the quantum scenario.[If] Hillery et al. proposed this result significantly improves the viability of quantum

a scheme where an unknown qubit can be shared with tweecret-sharing schemes.

players, such that to recover the original qubit the players It is interesting to note that, in this case, classical data
have to put their pieces of quantum information together. Irhelp one to perform a completely quantum task. This is not
[8] Cleve, Gottesman, and Lo presented a more generdhe case with data compressiph0] or with the quantum
scheme where a dealer can share an unknown quantum stagpacity of a quantum chanrfdll]. In [11] Adami and Cerf
with a set of players in a way that only authorized groups ofproved that a classical forward channel connecting two par-
players can recover the original secret and collusions of unties cannot increase the capacity of a quantum channel be-
authorized players cannot get any information about it. Théween them. Irf10] Barnumet al. proved that no part of the
construction in[8] was based on quantum error-correctingquantum-information content of a quantum source can be
codes. A construction for general access structures based &aithfully replaced by classical information.

monotone span programs was presentef®]rby Smith. This paper is organized as follows. In Sec. Il we introduce

Differently than gquantum key exchange and other quaneur notations and give some preliminaries. In Sec. Il we
tum cryptographic protocols such as quantum bit commitstate our main results and in Sec. IV we introduce features of
ment, the main aim of quantum secret sharing is not tagjuantum secret-sharing schemes that become available with
achieve a level of security that is impossible in the classicabur results. Finally, in Sec. V we give our conclusions.
world. Rather, the aim is to share a different kind of data: an
unknown quantum state. If quantum computers become a Il. PRELIMINARIES
reality, quantum secret sharing could possibly play an impor-
tant role in distributed quantum secure computations.

In classical secure multiparty computations, several com- As stated in Sec. |, a secret-sharing scheme is a protocol
puters interconnected by a network want to compute théhat enables a dealél to share a secre$ with a set of
value of a function, which depends on secret inputs of all theplayersP so that the members of an authorized group will be
players. Some users might collude to cheat in the protocol agble to recovelS but no other members can get any infor-
to obtain information about the secret inputs of other playergnation about the secred The authorized groups will be
or to modify the result of the computation. In a quantumdefined by an access structdre a family where each ele-
version of a secure multiparty computation, a group of usersnent is an authorized group. The secret-sharing scheme will
would like to compute a quantum state by inputting quantunbe calledperfectif (1) each set listed id" can recover the
as well as classical data in a way that no allowed collusion ofecretS with absolute certainty, an?) none of the subsets
cheaters can get any information about the inputs of othenot listed in" can get any information about the secget
players or alter the result of the computation. When|P|=w andI'={BC P:|B|=t} we say we have a

A fundamental issue when dealing with secret-sharingt,w)-threshold scheme.

Secret-sharing schemes were independently introduced

A. Classical secret-sharing schemes
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B. Quantum error-correction codes and quantum secret for threshold schemes to general access structures. It was
sharing stated in[17] that in a quantum secret-sharing scheme, the
In [8] Cleve, Gottesman, and Lo introduced the notion ofSize of the shares must be at least that of the secret to be

quantum threshold schemes. It was based on quantum ergbared and all the important players must receive one quan-
sure correction[12—15. In an [n,k] quantum error- tum share.
correcting code, a quantum stg) e H* (where X is the
k-dimensional Hilbert spages associated with another vec- ) _
tor | ) e H" called a codeword, whene=k. The set of all C. Encryption of qubits
codewords is a linear subspade " with dim X=k. Let In the next section we show how to overcome this limi-
U be a unitary transformation that represents the action of theation by use of an interesting tool proposed[i8]: the
environment introducing errors in a quantum stag)  encryption of quantum bits, which is briefly reviewed in this
e H". If these errors are local errors, the action of this uni-section. The encryption scheme works as follows: suppose
tary operatorU on the quantum statgp) e H" can be ex- we have a quantum stafey) composed o qubits and a
panded in terms ofl,X,Y,Z}®", whereX,Y andZ are the random sequence ofn2classical bits, each pair of classical
three Pauli operators. bits is associated with a qubit and it determines which trans-
Therefore, we have that i(" the errors can be repre- formationoe{l,X,Y,Z} is applied to the respective qubit. If
sented by tensor-products operatdtg=® ;<j<naj, Where  the pair is 00/ is applied, if it is 01,X is applied, and so on.
a=(ay,ay, ...,ay), aje{l,X,Y,Z}. The number ofe; Itis easy to see that if is chosen at random froft,X,Y,Z}
#I| in a word « will denote the weight ofx and will be  the resulting staté}) is the complete mixture and no infor-
represented byv(a). A quantum codet is calledE-ermor  mation can be extracted out of it. However, if someone
correcting if V. a,B with w(a),w(B)<E and forVé,y  knows the classical sequence of bits, the sequence of opera-
ed, tors that were applied tpy) is known and, as they are uni-
_ _ . tary transformations, they can be reversed can be
(YEL|Egp)=(W|EEglpy=b, s(h|#), b,geC recovered. Therefore, classical data can be%ﬂs}jed to encrypt

if additionally, b, s=0, unlessa= g, the code is said to be quantum data.

nondegenerate. It is important to remark tlatnd 8 are
independent of(¢|¢). It is a well-known result that an
E-error-correcting quantum code can corre&t @rasures.
The minimum distance of a code can be defined as the |n this section we show how to improve quantum secret-
minimum number of undetected errors. Am,k] code with  sharing schemes, in terms of reducing the number of neces-
minimum distanced is referred as afin,k,d] code. Cleve, sary quantum shares, by using quantum encryption. First, we
Gottesman, and Lo exploited the fact that if we trace ovelive an example: suppose we want to share a quantum secret
any n—t subset of qubits of a codewold/)e H" in an  |S) with a set of players"={A,B,C,D,E} realizing an ac-
[n,k,d] code withd=t—1, we have that cess structurd’={(A,B,C),(A,D),(AE)}. If we encrypt
the quantum stattS) (using a classical kei() into another
guantum statéS) using the method described in Sec. I1C

and give|§) to the playerA, we can share the classical key
by a classical secret-sharing scheme that reallzeShe

is the complete mixture. Therefore, by measuring any subsgtlayer A cannot recovetS) from |§> because he does not

of dimension smaller or equal te- 1, it is impossible to get have the key. Only the subsets present’ican recover the

any information about the complete st&#. This is a con-  classical key and the encrypted state together. By using this

sequence of the fact that any information extracted out of dybrid (classic-quantumsecret-sharing scheme, we can re-

guantum state implies disturbance of the state. Therefore, dlize the access structuié by giving quantum data plus

we want to protect a quantum state composed afubits ~ some classical data to the play&rand only classical data to

from errors in any subset ¢&f qubits, we have to ensure that all the other players. This has some advantageous features;

any measurement performéaiaybe by the environmenon  for example, classical data is much easier to store, transmit,

any subset ok qubits will get no information about the state. and receive than quantum data. However, not all the access

It follows that in order to implement & (w) quantum thresh-  structures can be improved in this way. For example, if we

old secret-sharing scheme, we must hay@ta-1,1t] quan- analyze a (2,3)-secret-sharing scheme, we realize that there

tum code[8]. is no way to distribute quantum data to only some members
It is interesting to note that not all access structures can bef the set of players. We now give a definition of improvable

implemented by quantum secret-sharing schemes. This reecret-sharing schemes.

striction comes from the no-cloning theor¢f®]. This theo- Definition 1.A quantum secret-sharing scheme realizing

rem states that it is impossible to clone with perfect fidelityan access structur€={A;,A,, ... A;} among a set of

an unknown quantum state. Therefore, any access structuptayers P={P,P,, ... ,P,} is improvable if less tham

that has two disjoints subsets cannot be implemented. In amuantum shares are sufficient to implement it.

other papef17], Gottesman generalized the results obtained The following theorem answers the question of when a

I1l. IMPROVING QUANTUM SECRET-SHARING
SCHEMES

® !
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guantum secret-sharing scheme realizing a given access A. Threshold schemes

structure can be improved. _ In order to find out this expression, we first state the fol-
Theorem 1.For a conventional quantum secret-sharlngbv\,ing lemma.

scheme realizing an access structlire{A;,A;, ... A} Lemma 1A restriction of a threshold scheme is always a
among a set of playerB={P1,P,, ... Py}, itis “improv-  ihreshold scheme.

able” if there exists at least onBje Ajel’, 1<j=<r such Proof. The proof of this lemma follows from the defini-
thatT'|»_ p, does not violate the no-cloning theorem, wheretjon of threshold schemes.

Ilp p, denotes the restriction df to P—P;. The following lemma gives us the expression for the op-

Proof. If I'| »_p. does not violate the no-cloning theorem, timal restriction of a threshold scheme.

th ist i t-shari h that i Lemma 2.If a (k,n)-threshold scheme does not violate
€re exists a quantum secret-snaring scheme that realizgs, no-cloning theorem, its minimal access structure is equal
F|p,pi. We can implement a hybrid scheme realiziign

to the optimal one. Moreover it is given by the expression
the following way: we encrypt the shares pr_pi witha  (k—y,n—v) wherey=2k—n—1.

classical keyK and share it using a classical secret-sharing Proof. From lemma 1 we know that a restriction of a
scheme rea]izin@_ As T is a monotone access structure, thetthShO'd scheme is aIways a threshold scheme. Therefore, a
existence of a classical secret-sharing scheme implementid§striction of a k,n)-threshold scheme must be of the form

T is easily proved by using any of the well-known construc-(K—¥.n—7) for an integery. From the no-cloning theorem
tion techniques for monotone access structures present in tHg¢ know thatk—y>(n—y)/2=2k—n>y, so the minimal
literature (such ag{19]). All the sets inl'|»_p. can recover restriction hasy=2k—n—1. -

th ted sh but onlv th i th Example 1.Suppose a threshold scheme (99,100). In a
€ encrypted shares, but only In€ Sels 16an recover e ¢, nyentional guantum secret-sharing realization of this ac-
encrypted shares and the classical key together. |

¢ ¥ h i ¢ minimal imal cess structure, all the 100 players must receive a quantum
Now we formalize the notion of minimal and optimal ghare that is as large as the secret to be shared. However,

restricted-access structure. from lemma 5 we know that its minimal restriction is a
Definition 2.A realizable restriction of an access structure  3)_threshold scheme. Therefore, we just need three quan-
I'={A1,A;, ... A} toasubseBCP={Py,P;, ... ,Pplis  tum shares in order to implement a hybrid quantum secret-

a family I'|g={{AjNB}:A; e I'} that satisfies the no-cloning sharing scheme realizing a quantum (99,100)-threshold
theorem, anBNA;#J, VA el'. T|g is called minimal if  scheme. Following the same logic, we see that an

it is not improvable, and it is optimal if there is no other (n,n)-threshokj scheme can be realized with on|y one quan-

DC P such thatl’| is minimal and|D|<|B]. tum share.
We now give a protocol that implements an improved
quantum secret-sharing scheme among a set of plagers B. General access structures
={P4,P,, ... ,P,}, realizing an access structurewhen its , . i
realizable minimal restrictiofi|g is known. In this improved The analysis for general access structures is more compli-

scheme onlyB| quantum shares are needed, insteatibf cated. We_just im_prove a construction techniqL_Je that was
Distribution phase(1) Choose a random classical encryp- Presented i17]. First, we remember a construction of gen-
tion K. Encrypt the quantum secr8) using the encryption eral access structures from threshold secret-sharing schemes

algorithm described in Sec. Il C. The encrypted state will beproposed_ in[.19].by Bgnaloh and Leichter. It is based on
denoted |§> (2) Using a normal quantum secret-sharin monotonic circuits. With each general access structure, Be-
: 9 q 9 haloh associated a special kind of boolean circuit called

scheme, sharks) with the set of players realizinGj|s . Each  monotonic circuit. Suppose we have a boolean circuit with
member of B will receive a quantum shar¢Q;), 1<i  Boolean inputs, which represent the players, and one output
<|[BJ. (3) Using a classical secret-sharing scheme slare y The basic idea is to have a circuit that recognizes an au-
with the set of players realizing’. Each member ofP  thorized group of users. It means that the outputill be 1
={P1,P2, ... ,Pn} will receive a classical shar€;, 1<j if an authorized group of players is used as the input of the
=n. circuit. As the circuit is monotonic, changing one input from

Reconstruction phase(1) Collect the quantum shares 1 to 0 does not change the output from 0 tdekcluding
from the members oB. (2) Collect the classical shares from members of an unauthorized group will not change it into an
the members ofP. (3) Reconstruct the encrypted quantum authorized one Afterwards, we could build up a secret-
secret|S) and the classical kelt. (4) Decrypt|S) by using  sharing scheme from the description of the circuit. To ensure
K. the monotonicity of the circuit we will use onlgnD (/)

It is easy to see that the protocol described above sharesamdoR (\/) gates.
guantum secret with a set of players so that only the groups Example 2Following Benaloh’s representation, an access
of players specified by" will have access to the quantum structurel’={(A,B,C),(A,D)} would be represented by the
secret. However, we have to note that it is not easy to comeircuit y=(A/AB/AC)\/(A/A\D).
pute the minimal access structure for a general access struc- In a classical secret-sharing scheme, an access structure
ture I'. This task can be made easiedifhas certain sym- can be realized by associating thrnD gates with a
metry. This is the case of an important class of acces$q,q)-threshold scheme and theorR gates with a
structures: the so-called threshold schemes. (1r)-threshold scheme. In the given exampld/(B/\C)

042311-3
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would be realized by a (3,3)-threshold scheme andake hybrid scheme is_ secr.et sharing with prevention. In a
would be realized by a (1,2)-threshold scheme. This con{k:n,P)-secret sharing with prevention scheme, any group of
struction does not directly apply to the quantum scenarid® Users can avoid a_lll the other users to reconstructing the
because (1) quantum threshold schemes do not exist for>ecret Obviously, this s_cheme supposes that t_he pl_ayers send
r=2 due to the no-cloning theorem. their shares to a center in order to reconstruct it. This scheme

In [17], Gottesman proved that the (Jsthreshold was pr_oppsed im21]. It becomes ava|laple in the quantum

. scenario in the same way as the proactive scheme, by apply-

scheme can be substituted by ar( —1)-threshold scheme 5 45 the classical scheme used to share the key.
(@ majority function. We earlier saw that an — “Aq 5 final example, we cite secret-sharing schemes with
(r,2r—1)-threshold scheme cannot be improved. Howevergisenrolimen{22]. In this scheme, a player can be excluded
all the (q,q)-threshold schemes used to implement the logiyithout setting a new scheme. We see that this scheme does
cal AND can be substituted by a (1,1)-quantum secret-sharingot directly apply to our hybrid scheme. However, if we
scheme plus aq,q)-classical secret-sharing scheme. Thereregard the players who will hold quantum shares as high
fore, we see that a large group of general access structuresliable ones and that they will not be excluded of the
can also be improved. However, it is clear that the improvedscheme, it becomes implantable. However, only the players
access structure achieved by this construction is not minimakho hold only classical data can be excluded. Other varia-

in general. tions, like nonperfect secret-sharing schemes, gradual disclo-
sure of a secret, among others can be achieved in the same
IV. FEATURES way.

Besides reducing the amount of quantum data that must
be given to the set of players in order to share a quantum
secret, another advantage of the hybrid quantum secret- e proposed a hybrid classical-quantum secret-sharing
sharing schemes is that they make possible a straightforwagtheme that shares a quantum secret among a set of players
application of several features that are available for C|aSSiC%uch that only authorized groups can recover the secret and
secret-sharing schemes and are not yet known to be valid ifinauthorized groups have no information about it. We
the quantum scenario. We briefly explain these features iproved that for several access structures, this scheme can be
this section. implemented with less quantum shares than in a conven-

The security of ank,n)-threshold scheme is ensured iff tional quantum secret-sharing scheme. Additionally, some
an adversary is restricted to compromise less thatayers  features of classical secret-sharing schemes, whose availabil-
during the whole lifetime of the secret. This is a quite strongity was not even known in the quantum domain, became
assumption for long-term secrets. In order to cope with thisavailable. We did not address the robustness against noise
problem, Herzbergt al. proposed in[20] a scheme where and/or cheating in the proposed protocol. Clearly, there is a
the shares are periodically renewed without changing the serade-off between the improvability of an access structure
cret. It is easy to see that this construction applies to ouand its robustness. If only one player holds the quantum
hybrid secret-sharing scheme, therefore creating a proactighares and if anything happens to this state, the secret will be
quantum secret-sharing scheme. To do so, we just use a prgestroyed forever. We state the analysis of this problem as a
active secret-sharing scheme to share the classicakagd  future research topic.
we periodically change the classical shares among the play-

V. CONCLUSIONS

ers. It is important tq note that we still do not know whether ACKNOWLEDGMENTS
such a protocol exists or not in a pure quantum secret-
sharing scheme. A.C.A.N. thanks Motohiko Isaka and Fabio Takada for

Another interesting scheme that becomes available in thealuable suggestions.
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