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ERROR-CORRECTING CODES AND MINKOWSKI’S

CONJECTURE

Peter Horak

ABSTRACT. The goal of this paper is twofold. The main one is to survey the
latest results on the perfect and quasi-perfect Lee error correcting codes. The
other goal is to show that the area of Lee error correcting codes, like many ideas
in mathematics, can trace its roots to the Phytagorean theorem a2+b2 = c2. Thus
to show that the area of the perfect Lee error correcting codes is an integral part

of mathematics. It turns out that Minkowski’s conjecture, which is an interface of
number theory, approximation theory, geometry, linear algebra, and group theory
is one of the milestones on the route to Lee codes.

1. Introduction

Let S be a space and T = {Ti, i ∈ I} be a family of subsets of S called also
tiles. Then T forms a tiling of S if

⋃
i∈I Ti = S and int(Ti)

⋂
int(Tj) = ∅ for all

i �= j, i, j ∈ I. Throughout this paper S = Rn and the tiles will be unit cubes or
clusters of unit cubes. It is trivial to tile Rn by unit cubes. Two unit cubes are
called twins if they share a complete (n − 1)-dimensional face. In Figure 1(a)
there are twins in R3, while in (b) there is an example of two unit cubes which
share a 2-dimensional face but not the entire one. It would be natural to ask
whether there exists a tiling of Rn by unit cubes so that there are NO twins. In
other words, can we find a tiling of Rn by unit cubes that is completely “messed
up”?

A lattice tiling T of Rn by unit cubes is a tiling where the centers of cubes
in T form a lattice; as usual, by a lattice of points in Rn we mean a subgroup
with respect to the vector addition. In 1896 Minkowski formulated a conjecture,
which does not sound that natural as the above question, in linear algebra terms,
and later in 1907 he added its geometric version that is stated below:

2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 05B45, 94B99.
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(b)

(a)

Figure 1. (a) Twins in R3, (b) an example of two unit cubes which share
a 2-dimensional face but not the entire one.

��������	� 1 (Minkowski)
 Each lattice tiling of Rn by unit cubes contains
twins.

To understand why Minkowski included the lattice condition in his conjecture
we will provide a short historic account of the development that led to the
conjecture. Already in the ancient Greece they discovered all integer solutions
of the equation x2 + y2 = z2. In the course of time Diophantos, Fermat, Euler
and others studied equations x2 + y2 = z3, x2 + y2 = p, where p is a prime, and
forms Ax2+By2, etc. Lagrange in 1775 looked at the most general quadratic form
Ax2+Bxy+Cy2, where A,B,C are fixed integers. In the case Ax2+Bxy+Cy2

is positive for any x, y, not both equal to 0, then the form is called positive
definite. To estimate the minimum nonzero value of the form for integers would
help with his classification of quadratic forms. Gauss showed that instead of
looking for the minimum of a positive definite quadratic form we may examine
the square of the length of the shortest nonzero vector in a lattice. In one of his
deepest results Minkowski improved on the upper bound of the minimum of the
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ERROR-CORRECTING CODES AND MINKOWSKI’S CONJECTURE

positive definite quadratic forms. His work related to the result led to the above
stated conjecture and this is why Minkowski was interested in lattice tilings.
For more detailed description of the roots on Minkowski’s conjecture we refer
the reader to the excellent monograph [20].

In 1930, when Minkowski’s conjecture was still open, K e l l e r [14] suggested
that the lattice condition in the conjecture is redundant, that the nature of the
problem is purely a geometric one, and not algebraic as assumed by Minkowski.
Thus he conjectured that each tiling of Rn by unit cubes contains twin cubes.
In 1940 P e r o n [17] verified Keller’s conjecture for n ≤ 6. However, in 1992,
L a g a r i a s and S h o r [15] showed that Keller’s conjecture is false for each
n ≥ 10. This remarkable result is on one hand surprising, while on the other
hand is intuitive. The surprising part is that there is a tiling of R10 by unit
cubes not containing twins. However, once we have such a tiling, it is expected
that a tiling with this property exists for all higher dimensions. The higher the
dimension of the space, the more freedom we get. Keller’s conjecture for the
remaining dimensions was solved in 2002 by M a c k e y [16], who showed that
the conjecture is false for n = 8, 9 as well, and finally this year M y r v o l d
et al. (private communication) showed, providing a computer based proof, that
Keller’s conjecture is true for n = 7.

Minkowski’s conjecture was settled in the affirmative by H a j ó s [7] who first,
in 1938, reformulated Minkowski’s conjecture in group theory terms, and then
solved the conjecture three years later. Hajós reformulation turns out to provide
a very strong tool in the area of tilings till nowadays. Therefore we will state
it here. Hajós proved that the following statement is equivalent to Minkowski’s
conjecture:

����	� 1 (Hajós)
 Let G be a finite abelian group. If G can be written as
a direct product of cyclic sets Ai; that is, A = A1+A2+ · · ·+An, where Ai is of
the form Ai = {e, a, a2, a3, . . . , ak}, a ∈ G, i = 1, . . . , n, e being the unit element
of G, then Ai is a subgroup of G for at least one i.

2. Tilings by crosses

After Minkowski’s conjecture has been settled tilings of Rn by different clus-
ters of cubes have been considered. In the paper we first confine ourselves to
tilings by n-crosses. Consider a unit cube in Rn, where at each facet another
unit cube is attached. Such a cluster of cubes is called the n-cross or simply
a cross. It easily follows from the definition that the n-cross consists of 2n + 1
cubes. We note that the n-cross can be seen as a Lee sphere of radius 1, see
Figure 3.
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Tiling by crosses were considered independently by several people, e.g.,
U l r i c h [24] in 1957, K á r t e s z i [12] in 1966, S t e i n [19] in 1967, and
G o l o m b and W e l c h [4] in 1968.

Ulrich was working on the subject from the error-correcting codes point of
view, and he did not consider tilings of the whole n-space. Kárteszi asked whether
there exists a tiling of R3 by crosses. Feller, for n = 3, and then Korchmáros and
G o l o m b and W e l c h [4] showed that there is a tiling of Rn by crosses for all
n ≥ 2.

Let T be a tiling of Rn by crosses. Then such a tiling is called a lattice
tiling if the centers of the crosses in T form a lattice; and it is called a Z-tiling
(Q-tiling) if the centers of the crosses in T have integer (rational) coordinates.
It turns out that all tilings of Rn by crosses mentioned above were lattice
Z-tilings. M o l n á r [13] has made a big step forward by enumerating all such
tilings.

����	� 2 (Molnár)
 The number of non-congruent lattice Z-tilings of Rn by
crosses equals the number of non-isomorphic Abelian groups of order 2n+ 1.

Molnár’s paper, on top of bringing an interesting result, provides a powerful
method how to construct different kinds of lattice tiling by clusters of cubes.
For longer time only lattice Z-tilings by crosses were known. It was widely be-
lieved that there is no Q-tiling by crosses which is not congruent to a Z-tiling.
Let us stress that a Q-tiling that is not a Z-tiling has to be a tiling containing
crosses C1 and C2 so that there is a unit cube K1 in C1 and a unit cube K2 in
C2 so that K1 and K2 intersect in an (n − 1)-dimensional face but not in the
whole such face, see Figure 1(b). Therefore, the following result of S z a b ó [21]
came as a big surprise.

����	� 3
 If 2n + 1 is not a prime, then there exists a Q-tiling of Rn by
crosses that is neither a Z-tiling nor a lattice tiling.

To prove his result Szabó used a refinement of Molnár’s method mentioned
above. If tiling a finite space one can use a trial and error method to find it. How-
ever, when tiling an infinite space, a clear strategy has to be employed. One ap-
proach is to use algebraic methods, another is to find a periodic tiling; a tiling
that is obtained by repetitively applying a tiling of a finite space. The tiling
produced by Szabó is not a lattice tiling but it is a periodic one. A tiling that
is not periodic, i.e., a tiling that is not obtained by repetitively placing a finite
block, is called primitive. In [11] primitive tilings of Rn, where 2n + 1 is not
a prime, have been constructed for the first time. In fact a stronger result has
been proved there:

����	� 4
 If 2n+1 is not a prime, then (i) the total number of non-congruent
primitive Z-tilings of Rn by crosses is 2ℵ0 ; (ii) the total number of non-congruent
periodic Z-tilings of Rn by crosses is ℵ0.
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Not much is known about the number of tilings of Rn by crosses in the case
when 2n+1 is a prime. From Molnar’s result we know that there is the unique,
up to a congruency, lattice Z-tiling of Rn by crosses. Further, a generalization
of Hajós result, Theorem 1, due to Rédei, implies that for 2n+ 1 being a prime
number, each lattice tiling of Rn by crosses is congruent to a Z-tiling. It is
obvious that there is only one tiling, up to a congruency, of Rn by crosses for
n = 1. In [11] it was proved

����	� 5
 For n = 2 and n = 3, any two tilings of Rn by crosses are
congruent.

We believe that the statement can be extended to all n when 2n+1 is a prime.
Therefore,

��������	� 2
 If 2n+ 1 is a prime number then there exists, up to a congru-
ency, only one Z-tiling of Rn by crosses.

The above conjecture, if true, would go totally against our intuition that says
the higher the dimension of Rn the more freedom we get; see also a comment on
the results on Keller’s conjecture. There are 2ℵ0 tiling by crosses of R4 but there
would be only ONE tiling of R5 by crosses. Yet, we believe that we have some
evidence that supports the conjecture.

2.1. Hilbert’s 18th problem

A modification of a cross provides a counterexample to the 18-th problem
of Hilbert.

�	���� 1 (Hilbert)
 If congruent copies of a polyhedron P tile R3, is there
a group of motions that copies of P under this group of motions tile this space?

In 1985 S z a b ó [22] modified a 3-cross by adding pyramids at the end of its
six arms, which are lopsided to prevent rotational symmetries, see Figure 2.

This polyhedron tiles R3 but not by a group of motions (= distance preserving
bijections). This is probably the most simple and elegant counterexample to
Hilbert’s problem.

3. Lee error-correcting codes

To make this paper self-contained we start with some basic definitions. Let
(C, ρ) be a metric space. Then a code is any subsetM of C, |M | ≥ 2. The elements
of C will be called words, while elements of M will be referred to as codewords.
Let A ∈ C. Then S(A, r) will stand for the sphere of radius r centered at A.
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Figure 2. Szabó’s modification of a 3-cross by adding pyramids.

The code M is an e-error correcting code if for any two codewords W,Z ∈ M
it holds S(W, e) ∩ S(Z, e) = ∅; that is, if ρ(W,Z) ≥ 2e + 1. If, in addition,⋃

W∈C S(W, e) = C, then M is a perfect e-error correcting code. In other words,
a code M is a perfect e-error correcting if for each word A ∈ C there exists the
unique codeword W ∈ M so that ρ(A,W ) ≤ e.

The Lee codes are subsets of the metric space (C, ρL), where C = Zn
q , and

ρL is the Lee metric (= the Manhattan metric, the zig-zag metric). That is, for
any two words U, V ∈ Zn

q , U = (u1, u2, . . . , un), V = (v1, v2, . . . , vn), ρL(U, V ) is

given by ρL(U, V ) =
∑n

i=1min(|ui − vi| , q− |ui − vi|). Such code is called a Lee
code of block size n over Zq. A perfect e-error correcting code of block size n over
Zq will be denoted by PL(n, e, q). By a Lee code of block size n over Z we will
understand a code M ⊂ Zn. The Lee metric in this case is given by ρL(U, V ) =∑n

i=1 |ui − vi|, where U = (u1, u2, . . . , un), V = (v1, v2, . . . , vn) ∈ Zn. A perfect
e-error correcting Lee code over Z will be denoted by PL(n, e).

Let n, q, e ∈ N , q ≥ 2e+1, be numbers so that there exists a PL(n, e, q) code.
Then it is easily seen that a periodic repetition of this code results in a PL(n, e)
code. This immediately yields

����	� 6
 Let n, e be numbers so that there is no PL(n, e) code. Then
PL(n, e, q) code exists for no q ≥ 2e+ 1.
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Therefore, we first will concentrate on PL(n, e) codes. Since PL(n, e) code
can be seen as a partition of Zn, only a small step is needed to get a geometrical
interpretation of PL(n, e) codes. Let R be the set of real numbers. Consider the
n-dimensional space Rn endowed with the Lee metric ρL. The n-cube centered at
X = (x1, . . . , xn) ∈ Rn is the set C(X) = {Y = (y1, . . . , yn)| yi = xi + αi , where
−1

2
≤ αi ≤ 1

2

}
. By a Lee sphere of radius r in Rn, L(n, r), centered at O, we

understand the union of n-cubes centered at Y, where ρL(O, Y ) ≤ r, and Y has
integer coordinates. Finally, a Lee sphere of radius r in Rn centered at X ∈ Rn

is a translation of L(n, r) centered at O along the coordinate axes so that O is
mapped on X. Clearly, a PL(n, e) code exists if and only if there is a tiling of Rn

by Lee spheres of radius e. The Lee spheres L(2, 1), L(2, 2), L(3, 1), and L(3, 2)
are depicted in Figure 3. As it can be easily seen from the definition of the Lee
sphere, the n-cross is the Lee sphere of radius 1.

n=2 n=3

e=1 e=1

e=2 e=2

Figure 3. The Lee spheres L(2, 1), L(2, 2), L(3, 1), and L(3, 2).

3.1. The Golomb-Welch conjecture

Go l o m b and W e l s h [4] constructed a perfect e-error correcting Lee code
for parameters (n, e, q) = (1, e, 2e + 1) ,

(
2, e, e2 + (e + 1)2

)
, and (n, 1, 2n + 1)

(tiling by crosses). In [4] they conjectured that these are the only perfect Lee
error-correcting codes.
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��������	� 3 (Golomb-Welch)
 There are no PL(n, e) codes for n > 2, e > 1.

Thus, in other words, see Theorem 6, they conjectured that there are no
perfect e-error correcting codes PL(n, e, q) for n > 2, e > 1, and q ≥ 2e + 1.
There are many results supporting the conjecture. In [18] P o s t proved:

����	� 7 (Post)
 PL(n, e) codes do not exist for 3 ≤ n ≤ 5, e ≥ n− 2, and

for n ≥ 6, e ≥
√
2
2 n− 1

4

(
3
√
2− 2

)
.

In the final remark in [18] P o s t states that by using a computer to evaluate
coefficients of the Taylor series of a suitable function it is possible to show that
there are no perfect e-error correcting codes for

6 ≤ n ≤ 130, and e ≥ 1

16
(9n− 15), and 131 ≤ n ≤ 305, and e ≥ 1

16
(9n− 14).

To the best knowledge of the author, so far the nonexistence of PL(n, e) codes
has not been proved for other values of n and e. To provide a support for the non-
existence of PL(n, e) codes A s t o l a [1] and others showed the non-existence
of PL(n, e, q) codes for specific values of n, e, and q ≥ 2e + 1. It seems that
the bigger e is, the easier it is to show that a perfect Lee code does not exist.
Moreover, the value of e = 2 is the threshold value for the non-existence of
perfect Lee codes. Thus, we guess that the most difficult case of the Golomb-
Welch conjecture is that for e = 2. There are only some sporadic results for
e = 2 and n > 4. The non-existence of a perfect 2-error correcting Lee code
PL(n, 2, q) for q = 13; q not divisible by a prime of the form 4m+1, and q = pk,

p is a prime, p �= 13, p <
√
2n2 + 2n+ 1 is shown in [1].

In [10] we proved:

����	� 8
 There is no PL(n, 2) code for n = 5 and 6.

This way the Golomb-Welch conjecture is proved for all pairs (n, e), where
6 ≥ n.

3.2. 1-error correcting Lee codes

It is very likely, see the Golomb-Welch conjecture, that for n > 2, perfect
e-error correcting Lee codes exist only for e = 1. As only linear codes are inter-
esting from the practical point of view, in [3] we determined all numbers q for
which there exists a perfect, linear 1-error correcting Lee code of block length n
over Zq, that is a linear PL(n, e, q) code. In this subsection we briefly describe
the main results of the paper.

In order to be able to describe the structure of linear PL(n, 1, q) codes, and
then to enumerate them, we first generalize this notion. Let q1, . . . , qn ∈ N. Then
by PL(n, 1; q1, . . . , qn) we will denote a perfect 1-error correcting Lee code of
block size n over Zq1 × · · · × Zqn. Clearly, if q1 = · · · = qn = q, then PL(n, 1, q)
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code is obtained. The following theorem provides a sufficient condition for the
existence of a linear PL(n, e; q1, . . . , qn) code. To be able to facilitate our dis-
cussion we need one more definition.

Let G be an abelian group of order 2k + 1. An ordered set F = (g1, . . . , gk)
of k distinct elements of G is fundamental if, for all i = 1, . . . , k, it is gi �= 0, and
g−1
i /∈ F. By the multiset of orders of G, denoted Ord(G), we will understand
the multiset {ord(g1), . . . , ord(gk)}, where (g1, . . . , gk) is a fundamental set. It
is not difficult to see that Ord(G) is well defined. That is, to see that Ord(G)
does not depend on the choice of its fundamental set F. Indeed, as G is of an odd
order, there is no convolution in G. Thus, each fundamental set contains exactly
one element from every pair g, g−1, g �= 0, and the fact that ord(g) = ord(g−1)
for every g ∈ G completes the argument.

����	� 9
 Let G be an abelian group of order 2n + 1, F = (g1, . . . , gn) be
a fundamental set of G, and qi ∈ N, where ord(gi)|qi for i = 1, . . . , n. Then the
set L ⊂ Zq1 × · · · × Zqn defined by L =

{
(a1, . . . , an); a1g1 + · · ·+ angn = 0

}
, is

a linear PL(n, 1; q1, . . . , qn) code.

So Theorem 9 guaranties the existence of such a code and shows how to
construct it. It turns out that this condition is also necessary. We will state the
condition only for the case q1 = · · · = qn = q.

����	� 10
 A linear PL(n, 1, q) code exists if and only if there is an abelian
group G of order 2n+ 1 so that ord(g)|q for all g ∈ G.

As an immediate consequence we get

��	����	� 11
 Let n ∈ N, 2n + 1 = pa1
1 . . . pak

k be the prime number fac-

torization of 2n + 1 and let p =
∏k

i=1 pi. Then a linear PL(n, 1, q) code exists
if and only if p|q. In particular, the smallest q, for which there exists a linear
PL(n, 1, q) code, equals p.

��	����	� 12
 For each n there exists a linear PL(n, 1, 2n+ 1) code.

The next theorem enumerates linear PL(n, 1, q) codes. As a special case of
this theorem we get the result of M o l n á r [13] discussed above.

����	� 13
 The number of non-isomorphic linear PL(n, 1, q) codes equals the
number of non-isomorphic abelian groups G of order 2n+1 with the property that
for each g ∈ G it holds ord(g)|q. In particular, the number of non-isomorphic
PL(n, 1, 2n + 1) codes equals the number of non-isomorphic abelian groups of
order 2n+ 1.

Finally, we design a linear time decoding algorithm for each linear
PL(n, 1; q1, . . . , qn) code.
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Let C be a PL(n, 1; q1, . . . , qn) code. Then, by [3], C can be generated by
the mapping φ : Zq1 × · · · × Zqn → G, φ(ei) = gi, where F = (g1, . . . , gn) is

a fundamental set of the abelian group Ġ, and

φ
(
(a1, . . . ,an)

)
= a1φ(e1) + · · ·+ anφ(en) = a1g1 + · · ·+ angn. (1)

As G is abelian, G can be written in a unique way as a direct product of cyclic
groups Zr1 × Zr2 × · · · × Zrt of prime power orders. Thus each element of G
can be represented as a t-tuple (b1, . . . , bt), bi ∈ Zri . We list the elements of G
in the lexicographic order. The value r(b1, . . . , bt) is the order of the element
(b1, . . . , bt) in this lexicographic ordering. Thus,

r(b1, . . . , bt) = an + 1 +

n−1∑

i=1

ai

n∏

j=i+1

qj . (2)

Next, we define the function f : {0, . . . , 2n} → {−n,−(n − 1), . . . ,−1, 0, 1, . . . ,
n−1, n} as follows: Let (b1, . . . , bt) ∈ G with r(b1, . . . , bt) = k. If (b1, . . . , bt) ∈ F
and i is the index, 1 ≤ i ≤ n, so that φ(ei) = (b1, . . . , bt), then f(k) = i,
otherwise, if (b1, . . . , bt)

−1 ∈ F and i is the index, 1 ≤ i ≤ n, so that φ(ei) =
(b1, . . . , bt)

−1, then f(k) = −i.

Now we are ready to describe the algorithm. Supposed that we receive a word
V = (a1e1 + · · · + anen). As the first step we calculate φ(V ) = φ(a1e1 + . . .
· · ·+anen) = g ∈ G. If g = 0, then V is a codeword. Otherwise, we calculate the
value r(g), and subsequently the value s = f

(
r(g)

)
. If s > 0 then the codeword

W ∈ C with the property ρL(V,W ) ≤ 1 is the word (a1e1 + · · · + anen) − es,
otherwise, if s < 0, then W = (a1e1 + · · ·+ anen) + es.

Clearly, the values of the function f are calculated only once and therefore the
time needed for obtaining those values is not included in the complexity of the
decoding algorithm. Thus, the above described algorithm is a linear time algo-
rithm, as calculating φ

(
(a1, . . . ,an)

)
, and r(b1, . . . , bt) requires a linear number

of operations with respect to n.

4. Variations and generalizations on the theme of perfect
Lee codes

We finish this paper with two generalizations of Lee codes.

4.1. Quasi-perfect Lee codes

Lee distance codes have many practical applications. They are used for phase
modulated and multi-level quantized-pulse modulated channels, they have been
applied in toroidal interconnection networks, and these codes have been shown
to be the foundation of designing placement strategies to distribute commonly
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shared resources like Input/Output devices over a toroidal network. On the other
hand, the Golomb-Welch conjecture, and the result related to this conjecture,
indicate that the perfect Lee codes P (n, e, q) exist only for very few values of
n, e, and q. Therefore, to be able to use Lee codes in practical application, the
quasi-perfect Lee codes have been introduced in [2]. Here we confine ourselves
to n = 2.

LetD be a Lee code over Z2
q. ThenD is called a quasi perfect e-error correcting

Lee code if

(a) dL(U, V ) ≥ 2e+ 1 for every two code words U, V in D;

(b) Every word in Z2
q is at distance at most e+1 from at least one code word.

Thus a quasi-perfect e-error correcting Lee code is a generalization of the perfect
e-error correcting Lee code, where (b) is replaced by the condition that every
word in Z2

q is at distance at most e from exactly one code word.

Further, a code over Z2
q generated by (e, e+1), that is the code

{
(αe, α(e+ 1)), α ∈ Z

}
,

is denoted by De. It is very well known that there exists, for qe = 2e2 + 2e+ 1,
a perfect e-error correcting Lee. In [2] it is shown that for all the values of q
between qe and qe+1 there is a quasi-perfect e-error correcting Lee code. Namely,
it is proved there:

����	� 14


(1) For q = 2e2 + 2e+ 1, e ≥ 1, De is a perfect e-error correcting Lee code.

(2) For 2e2 + 2e + 2 ≤ q ≤ 2(e + 1)2 + 1, e ≥ 1, De is a quasi-perfect e-error
correcting Lee code.

(3) For 2(e+1)2+2 ≤ q ≤ 2(e+1)2+2(e+1), e ≥ 2, De+1 is a quasi-perfect
e-error correcting Lee code.

Clearly, the existence of a quasi-perfect e-error correcting Lee code over Z2
q

implies the existence of such a (replication) code over Zk×Zm whenever q|k and
q|m. Thus, by Theorem 14, for each e, there are infinitely many values of q so
that there is a quasi-perfect e-error correcting Lee code over Z2

q.

It was showed in [8], that there exists a fast decoding algorithm for quasi-
-perfect Lee codesD over Z2

q given by Theorem 14. Regardless of q, the number of
elementary operations used by the algorithm to decode a word is bounded from
above by an absolute constant. Here by an elementary operation we mean an
arithmetic operation or the operation of max of two numbers or the operation of
taking the integer part of the number. The basic idea of the algorithm comes from
representing the code in a 2-dimensional plane endowed with the Manhattan
metric. Using geometric properties of the code, it was showed that to decode
a word it is sufficient to calculate its distance to at most 4 code words.
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4.2. Lee spheres of different radii

It was proved by several authors, see above, that there is no PL(3, 2) code.
In [5] a stronger statement is proved. It is shown there:

����	� 15
 There is no tiling of R3 with Lee spheres of radii at least two,
even with different radii.

Yet a stronger result is proved in [6], a sequel to [5], where it is shown that
there is no tiling of R3 with Lee spheres if radius of at least one sphere is
greater than one. This led the authors of the two papers to suggest the following
strengthening of the Golomb-Welch conjecture:

��������	� 4
 There does not exist a tiling of n-dimensional space, n > 2,
with Lee spheres of radii greater than 0 such that the radius of at least one
sphere is greater than 1.

Recently, Š p a c a p a n [23] extended Theorem 15 to the 4-dimensional case.
Unlike [5], where a very elegant “picture says it all” proof for R3 is provided, the
proof for R4 is computer aided. In [11], a unified proof of the result of Theorem 15
for Rn, 3 ≤ n ≤ 5 is provided.
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