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Can transverse dunes move sideways? Secondary flow deflection in the lee of transverse 1 
dunes with implications for dune alignment and migration 2 
 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

Ian J. Walker* 13 
Department of Geography 14 
University of Victoria 15 
P.O. Box 3050, Station CSC 16 
Victoria, British Columbia 17 
Canada V8W3P5 18 
Tel: (250) 721-7347 Fax: (250) 721-6216 19 
ijwalker@uvic.ca 20 
 21 
Dan H. Shugar 22 
Department of Geography 23 
University of Victoria 24 
P.O. Box 3050, Station CSC 25 
Victoria, British Columbia 26 
Canada V8W3P5 27 
Tel: (250) 472-5930 Fax: (250) 721-6216 28 
dshugar@uvic.ca 29 
 30 
 31 
*corresponding author32 



ABSTRACT 33 

Measurements of lee-side airflow response from an extensive array of meteorological instruments 34 

combined with smoke and flow streamer visualization is used to examine the development and 35 

morphodynamic significance of the lee-side separation vortex over closely spaced transverse dune 36 

ridges. A differential deflection mechanism is presented that explains the three-dimensional pattern 37 

of lee-side airflow structure for a variety of incident flow angles. These flow patterns produce 38 

reversed, along-dune and deflected surface sand transport in the lee that result in a net ‘lateral 39 

diversion’ of sand mass transport over one dune wavelength for incident angles as small as 10° 40 

from crest-transverse (i.e., 80° from the crest line). This lateral displacement in fluid mass transport 41 

increases markedly with incident flow angle, when expressed as the absolute value of the total 42 

deflection in degrees. Reversed flow and multidirectional sand transport occur for incident angles 43 

between 90 and 50°. These results document the three-dimensional nature of flow and sand 44 

transport over transverse dunes and provide empirical evidence for an oblique migration model that 45 

challenges the applicability of the ‘gross bedform-normal’ rule for explaining transverse dune 46 

morphodynamics and migration. 47 

 48 
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INTRODUCTION 50 

The relations between the near-surface airflow field (i.e., height < 10 m), particularly 51 

complex secondary lee-side flows, and sediment transport over dunes remain an elusive challenge 52 

for modeling dune morphodynamics and migration (Walker and Nickling, 2002; Baddock et al., 53 

2007; Livingstone et al., 2007). It is known that dune form, alignment, and spacing are controlled by 54 

the magnitude, frequency, and directionality of transporting surface wind (e.g. Bagnold, 1941; 55 

Fryberger and Dean, 1979; Lancaster, 1983; Bullard et al., 1996; Ould Ahmedou et al., 2007) as 56 

well as sediment characteristics (size and sorting) (Wilson, 1972) and availability (Wasson and 57 

Hyde, 1983), moisture effects (Kocurek et al., 1992), topographic barriers (McCauley and Breed, 58 

1980), and the presence of vegetation (Hesp, 1981; 1983; Wiggs et al., 1996). Other studies have 59 

linked dune alignment to coherent atmospheric circulation patterns such as Ekman spirals (Hanna, 60 

1969; Mabbut et al., 1969; Warren, 1976) and to the strongest transporting winds in the regime 61 

(Glennie, 1970). Ultimately, however, dune alignment and migration is the net result of complex, 62 

three dimensional sand transport patterns driven by all competent surface winds – including 63 

secondary lee-side flows (Sweet and Kocurek, 1990; Frank and Kocurek, 1996; Walker and 64 

Nickling, 2002; Baddock et al., 2007; Livingstone et al., 2007; Baddock et al., 2011; Weaver and 65 

Wiggs, 2011). Nearly 30 years ago, Rubin and Hunter (1985), and later Hesp et al. (1989) and 66 

Rubin (1990), observed that longitudinal dunes can migrate laterally, contrary to the prevailing 67 

thought that such dunes advance downwind, or else extend at the terminal end (e.g. Bagnold, 68 

1941; Tsoar, 1983). To date, however, there is limited research that links deflected airflow and 69 

sediment flux in the lee of transverse dunes to their morphodynamics and migration (Walker, 1999; 70 

Walker and Nickling, 2002; Baddock et al., 2007).  71 

Morphodynamically, dunes are often classified based on their orientation to some 72 

resultant transport direction as transverse (perpendicular to the transport direction), longitudinal 73 

(transport-parallel), and oblique (15 – 75° to the resultant transport direction) forms (Fryberger 74 
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and Dean, 1979; Hunter et al., 1983; Lancaster, 1983; Rubin and Ikeda, 1990). Fryberger and 75 

Dean’s (1979) widely cited global assessment attributed the development and maintenance of 76 

specific dune types to the ratio of the resultant vector of sand transport, or drift potential (RDP), to 77 

total drift potential from all wind directions (DP). Fryberger and Dean found that simpler dune forms 78 

(e.g., barchans, transverse ridges) develop in less variable wind regimes with high sand transport 79 

potential (RDP/DP) while more complex dunes (e.g., star dunes) occur in highly variable wind 80 

regimes where the transport potential is lower.  81 

Regional winds used to describe dune form using Fryberger and Dean’s (1979) technique 82 

are usually measured at a standard height of 10 m, often from locations tens to hundreds of 83 

kilometers away from actual dune features (Hunter et al., 1983; Carson and MacLean, 1986). 84 

However, localized secondary airflow patterns such as flow deflection, topographic steering, and 85 

flow separation and reversal, often diverge greatly from the regional trend (e.g. Pearce and Walker, 86 

2005; Lynch et al., 2008; 2009; Walker et al., 2009; Jackson et al., 2011) and can be competent 87 

enough to drive deflected interdune sand transport (Walker, 1999) and, thus, contribute to three-88 

dimensional variations in dune sediment budgets. Thus, simple regional assessments of wind 89 

regime – dune form relations may be insufficient as they do not accommodate more complex 90 

natural flow – form – transport interactions (Walker and Nickling, 2002).  91 

This has generated some debate in the literature on wind regime – dune form relations 92 

(Hunter et al., 1983; Carson and MacLean, 1985; Hunter et al., 1985; Carson and MacLean, 1986). 93 

For instance, Carson and McLean (1986) noted an increase in oblique dune size in a reversing 94 

wind regime toward the direction of an along-dune oriented resultant transport vector (shown in 95 

their Figure 5). This complicated their interpretation of these dunes as true flow-transverse forms 96 

and they suggested the term ‘hybrid’ dunes as both longitudinal and transverse transport 97 

processes appeared to be contributing to their morphodynamics. This is essentially synonymous 98 

with the ‘oblique’ dunes documented earlier by Hunter et al. (1983) in coastal Oregon. In either 99 
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case, it is possible that the resultant sand transport vector (RDP), driven by winds transverse or 100 

slightly oblique to the dune crest, may actually align more so with deflected, along-dune oriented 101 

lee-side secondary flow patterns. Sand transport by such secondary winds may be responsible for 102 

the downwind ‘bulking’ of Carson and MacLean’s dunes (1986, see p.1983-1984).  103 

Other studies have shown that directional variability (i.e., dominant modes in the regional 104 

wind regime) control dune morphodynamics and alignment. For instance, Rubin and Hunter 105 

(1987) and Rubin and Ikeda (1990) showed that dune alignment follows a gross bedform-106 

normal rule such that, under variable flow directions, bedforms align so as to maximize the 107 

amount of crestline-normal transport. In other words, bedforms orient as transverse as possible 108 

to the resultant of all bedform-normal transport components and not necessarily to the resultant 109 

transport vector. Rubin and Ikeda (1990) stressed that opposing vector components in the 110 

transport regime should not be cancelled out (as in the RDP approach) as they may both be 111 

formative in maintaining a single dune orientation. For instance, transverse forms are 112 

maintained for divergence angles (i.e., angle between dominant direction modes) up to 90° or 113 

equal to 180° (i.e., a reversing regime), or when transport is dominated by one direction mode. 114 

Longitudinal dunes often orient with the dune axis within 15° of the mean wind direction (Hunter et 115 

al., 1983) and are maintained in bi-modal wind regimes with divergence angles >90° providing 116 

equivalent transport in both directions. As such, dune-parallel wind flow is not a requirement for 117 

longitudinal bedform maintenance (Lancaster, 1982; Tsoar, 1983; Rubin and Ikeda, 1990). 118 

Transitional, or oblique dunes occur for intermediate divergence angles from 90 to 112.5° (or 119 

‘obtuse-bimodal’ per Fryberger and Dean, 1979) and are controlled by both transverse and 120 

along-dune oriented transport processes (Carson and MacLean, 1986). Rubin and Ikeda (1990) 121 

conclude that, despite alignment, all free dune forms are governed by the same essential 122 

dynamics in that they will orient as perpendicular as possible to the maximum bedform-normal 123 

components of transport. As such, divergence between directional modes and the ratio of sand 124 
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transport by these modes is more important in dune maintenance and migration than the net 125 

resultant vector.  126 

As recognized by Fryberger and Dean (1979, p.145), however, it is important to note that 127 

the regional scale sand transport regime assessments provide only a first order estimate of the 128 

transport regime and are unable to incorporate other key transport- and supply-limiting factors 129 

(including grain size, soil moisture, vegetation, surface roughness) as has been explored by 130 

subsequent research on aeolian sand transport potential and dune mobility (e.g. Muhs and Maat, 131 

1993; Gaylord and Stetler, 1994; Muhs and Holliday, 1995; Wiggs et al., 1995; Bullard et al., 1996; 132 

Wolfe, 1997; Tsoar and Illenberger, 1998; Kocurek and Lancaster, 1999; Muhs and Wolfe, 1999; 133 

Lancaster and Helm, 2000; Tsoar, 2002). These factors are particularly important when examining 134 

regional to landform-scale characterizations of sand transport behaviour in vegetated, temperate 135 

and/or coastal environments (Pearce and Walker, 2005; Lynch et al., 2008; 2009; Walker et al., 136 

2009; Jackson et al., 2011). 137 

Emphasis has shifted from research on regional scale flow regime – dune form relations to 138 

examining landform scale interactions between near-surface secondary flow and resulting sand 139 

transport patterns that drive dune morphodynamics in both coastal and desert settings (e.g. Tsoar, 140 

1983; Howard, 1985; Hesp et al., 1989; Rasmussen, 1989; Cooke et al., 1993; Arens et al., 1995; 141 

Lancaster, 1995; Hesp and Hyde, 1996; Wiggs, 2001; Walker and Nickling, 2002; Baddock et al., 142 

2007; Ould Ahmedou et al., 2007; Lynch et al., 2008; 2009; Walker et al., 2009; Weaver and 143 

Wiggs, 2011). Despite this recognition, very few models of secondary flow and dune 144 

morphodynamics exist, particularly on how these flow and sand transport patterns change with the 145 

incident flow angle and what this means for dune sediment budgets and migration (Walker and 146 

Nickling, 2002; Hesp and Walker, In press). Instead, most existing models of flow over bedforms 147 

view the system as two-dimensional and consider only limited flow conditions (i.e., transverse, 148 

unseparated) over relatively isolated dunes (Sweet and Kocurek, 1990; Frank and Kocurek, 1996; 149 
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Baddock et al., 2011). However, in nature secondary flows and closely spaced dune configurations 150 

generate mass and energy transfers that are three-dimensional. For instance, Walker (1999) 151 

showed that appreciable sand transport can occur in deflected, reversed, and along-dune 152 

directions within the interdune and cautioned that secondary lee flows create additional mass 153 

transport components that must be considered for sediment continuity and, hence, for 154 

interpretation of dune dynamics, maintenance, and migration.  155 

This study measures and examines the responses of three-dimensional lee-side flow 156 

structure and interdune sand transport to changes in incident flow angle. Flow visualization and 157 

concurrent measurements of lee-side sediment transport over the same dune (Walker, 1999) are 158 

used to show a lateral diversion of sand mass transfer over flow-transverse dunes. From this, a 159 

differential deflection mechanism is presented that explains secondary lee-side flow structure 160 

implications for dune maintenance and migration. An empirical model for oblique migration of 161 

transverse dunes is presented that challenges the applicability of the ‘gross bedform-normal’ rule 162 

for explaining dune morphodynamics. The convention to describe flow direction for this study is 163 

such that incident wind direction, i, measured at the crest of the dune is transverse to the crestline 164 

at 90° and parallel to the crestline at 0° (west) or 180° (east). When discussing deflected flow, d, in 165 

the lee of the study dune on the stoss slope of the downwind dune, we use the same coordinate 166 

system as for incident flow. For example, incident flow transverse to the crest (i = 90°) might be 167 

deflected 10° (d = 100°) in the lee. 168 

 169 

METHODS 170 

Wind speed and direction were measured along two crest-transverse transects spaced 171 

approximately 18 m apart in the lee of a small reversing dune in the Silver Peak dunefield, Clayton 172 

Valley, west-central Nevada (Walker, 1999) (Figure 1). Dune geometry differed slightly between 173 

sampling transects, as the east dune profile was slightly larger (h = 1.36 m) than the west (h = 1.2 174 

Comment [D1]: Ian, how’s this expanded description 
of i and d? 
Comment [IW2]: Presumably, you wanted to add the 
symbol i here?  I also thinned e/w text a bit. 

Comment [IW3]: This font looks weird in my vers. 
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m). The study dune was located within a successive grouping of similarly sized (h = 1 to 2 m), 175 

unvegetated, transverse ridges composed of fine sands (D = 150 µm) and oriented transverse (75º 176 

or approximately E-W) to a relatively consistent north-south reversing wind regime. During the 177 

period of study the dune profile had a sharp crestline with a distinct, southward facing lee slope.  178 

Each instrument transect extended 12 m leeward and perpendicular to the crest and 179 

consisted of 25 RM Young cup anemometers and six wind vanes strategically located to capture 180 

windspeed and direction variations in the immediate lee (Figures 2, 3). Instruments were extended 181 

on 1.2-m booms from one of four aluminum masts and were connected to dataloggers via cable. 182 

Near-surface anemometers were placed at 0.3 m to characterize transporting windspeeds (u0.3). 183 

Further details of the study site and sampling design are discussed in Walker (1999; 2000). 184 

Extended periods of consistent winds ranging in duration from 1 to 10 hours were sampled 185 

at 1 Hz and recorded as one-minute averages by datalogger. All speeds were normalized by an 186 

outer windspeed (u10h) measured at 12.4 m (approximately 10h) above the interdune datum atop 187 

an observation tower located between the sampling transects, where wind speeds ranged from 2 188 

to 15 m s-1 during the period of study. Incident flow speed and direction data were also measured 189 

at 3.8 m above the dune on the crest profile (i.e., u5.2h on east and u4.6h on west profiles, 190 

respectively). In total, 45 events were recorded over a 15-day period in May 1997 to yield an 191 

extensive dataset of over 22,000 minutes of flow measurements for a variety of incident flow 192 

speeds and directions. Contiguous transporting flow events (i.e., above an assumed transport 193 

threshold of 6 m s-1) ranging 7 to 24 minutes in duration and spanning incident flow angles were 194 

identified (Table 1). These events all occurred on the same day and, as such, dune form remained 195 

essentially constant between events.  196 

Flow patterns during the events presented here were also visualized using smoke tracers 197 

and a vertical array of streamer flags (Figure 4), which was essential for reconstructing lee side 198 

flow structure within the measurement array. A transect of 9 flow streamer towers was erected 2 m 199 

Comment [D4]: I think I’ve now fixed everything to 
U5.2h and U4.6h 
Comment [IW5]: OK… now, do we refer to these 5.2 
and 4.6h measurements or is everything always 
normalized by uouter/10h?  For e.g., I think the vectors 
are normalized by their respective crest outer 
measurements, not 10h., whwereas the profiles may 
have been. Doublecheck and clarify. 
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east of a 12-m observation tower in the centre of the study site (Figure 2b). The streamer towers 200 

were spaced 1 m apart and extended leeward from the crestline. Each tower was 3 m tall and had 201 

5 streamer flags each. Flow streamer behaviour in plan view at different heights above the 202 

interdune surface was recorded by video camera from atop the observation tower in the centre of 203 

the instrument array. Smoke tracer patterns were photographed in profile from the interdune 204 

corridor. Both sources of flow visualization were used to qualitatively confirm measured flow 205 

responses and help construct the extent and behaviour of interpreted flow patterns from the 206 

instrument array.  207 

 208 

RESULTS  209 

Time-averaged velocity profiles 210 

Time-averaged, normalized wind speed profiles for six locations on each dune transect are 211 

shown in Figure 5. For clarity, data from only three events (2, 4, and 7) ranging from transverse  (i 212 

≈ 90°) to crest-parallel (i ≈ 180°) are shown. Summary statistics are provided in Table 1. Profile 213 

gradient responses provide a good relative indicator of momentum extraction and fluid shear 214 

generated by the form as well as subsequent internal boundary layer redevelopment after 215 

reattachment. 216 

For relatively transverse (event 2, i ≈ 90°) and slightly oblique (event 4, i ≈ 110°) winds, flow 217 

over the crest was nearly uniform with increasing height above the surface for both east and west 218 

transects, whereas for crest-parallel flow (event 7, i ≈ 180°), a slightly kinked velocity profile was 219 

observed over the crest on both transects. On the east profile, the inflection point occurred only 0.7 220 

m above the crest surface (1.5h above interdune datum) for event 7, while on the west profile, it 221 

occurred at 1.6 m above the surface (2.4h). On the east profile, the crest-parallel incident flow 222 
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(event 7) was fastest at the highest sensor, 3.8 m above the crest surface (5.2h), while on the west 223 

profile, crest-parallel incident flow was slightly less than the transverse incident flow (4.6h, event 2). 224 

All three events shown in Figure 5 exhibited similar general trends in lee-side flow profile 225 

response, although magnitudes differed. Flow visualization confirmed that flow separation and 226 

intermittent reversal was present for all transverse wind events. In general, crest-parallel incident 227 

flows were faster over lee slope (near-surface) and stoss locations than other flows. Lee slope 228 

profiles for crest-transverse and oblique flows were inflected with a very steep gradient below dune 229 

height. This is due to flow separation and wake sheltering effects and indicates a region of high 230 

shear along the line of separation. The speed-height gradient was steeper for transverse incident 231 

flow (event 2) than for crest-parallel incident flow (event 7). On the east profile, near-surface flow 232 

was slowest in event 2, and fastest for event 7. Higher into the flow over the lee slope of the east 233 

profile, flow during event 7 (crest-parallel incident flow) was only marginally slower than other 234 

incident conditions. Over the lee slope of the west profile, near-surface speeds were generally 235 

faster than over the east transect, but during event 4 (initially slightly oblique to the crest), flow was 236 

slightly faster than during crest-parallel incident flow (event 7). As on the east profile, flow during 237 

event 7 had the shallowest gradient.  238 

The well-developed separation cell extended to about the stoss base, at which point the 239 

flow returned to a linear velocity profile. Flow visualization and onsite ripple patterns revealed that 240 

flow reattachment occurred between the interdune and stoss base locations on the east transect 241 

and further downwind between the stoss base and lower stoss I profiles on the west transect. 242 

 243 
Lee-side flow vectors 244 

Time-averaged flow vectors were derived from direction and speed data obtained at 245 

locations in the flow field where a wind vane and anemometer were co-located (see Figures 2, 3b). 246 

These vectors and associated summary statistics are displayed in plan view (Figures 6-8) and 247 
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provide useful indications of flow variability and directional response at different heights in the 248 

secondary flow region compared to outer flow above the dune crest. 249 

Figure 6 shows lee-side flow vector response for three crest-transverse events that increase 250 

in speed (events 1-3). Incident flow speeds at the top of the crest profiles (u5.2h on east, u4.6h on 251 

west) ranged from 0.84 – 0.92 of the outer flow (10h) and variability was less than 10% (i.e., CVui < 252 

0.10). Incident direction ranged ±2° from transverse (e.g. i = 88 to 92°) and directional variability 253 

was less than 6° for all events. Overall variability in direction increased with incident speed 254 

although steadiness in flow speed was highest at faster speeds (see CVu values in Figure 6c). 255 

Near-surface (z = 0.3 m) vectors on the lee slope for these events show net downwind flow 256 

with bi- or multi-modal directional variation indicating flow deflection and unsteadiness. Intermittent 257 

upslope (reversed) flow was observed at these locations but is not reflected in the vectors because 258 

of the relatively long (1 min.) averaging intervals. Speeds on the lee slope ranged approximately 30 259 

to 70% that of the outer flow at 10h and were slower on the east transect due to the increased 260 

sheltering offered by the taller dune. This sheltering effect increased with incident speed at all lee 261 

slope locations. The amount of flow deflection on the lee slope also increased with speed and dune 262 

height. 263 

There are two flow vector measurement points on the interdune and stoss base profiles 264 

that are staggered slightly for strategic placement within the separation region (see Figures 2, 3b). 265 

The interdune vectors, located just downwind of the lee slope base, characterized flow in the core 266 

of the separation cell (2nd sensor, 0.8 m above surface) and just above crest height (4th sensor, 1.8 267 

m). Vectors on the stoss base profile were located on the toe of the downwind dune the surface 268 

(0.3 m) and just above dune height (1.3 m). Over the interdune, flow at half-dune height was 269 

deflected more than that on the lee slope surface. Variability in direction at this location increased 270 

with incident speed and reversed flow occurred within the separation cell at the highest incident 271 

speed on the west transect (Figure 6c). Highly variable, multi-modal reversed flow was also 272 

Comment [IW6]: Double check the figure numbers 
throughout have been updated. 
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observed just above dune height (“upper” arrow) at this location for all events. The high SD° values 273 

at this location (particularly on the west transect) indicate high turbulence along the shear zone, as 274 

described above from Figure 5. Speeds above the separation cell in the interdune were 275 

comparable to incident speeds 3.8 m above the crest (u5.2h and u4.6h for east and west profiles, 276 

respectively) and, in general, were faster than at the stoss base location downwind due to flow 277 

expansion (and deceleration) downwind of separation at the crest.  278 

Surface vectors at the toe of the downwind dune (stoss base) were multi-modal on the east 279 

transect and strongly oblique to incident flow. Flow visualization and surface ripple patterns showed 280 

that this location was just downwind of flow re-attachment. Upper and half-height flow vectors were 281 

also multi-modal but more aligned sub-parallel to incident flow. Half-height vectors on the west 282 

transect were deflected more than those on the east transect. These vectors show that near-283 

surface deflection is greater (at the toe of the downwind dune, or near the point of re-attachment) 284 

over the taller dune (east) and that this pattern increased with faster incident speeds. This suggests 285 

that the flow separation cell was slightly larger over the taller dune and for faster wind speeds, as 286 

expected. Flow direction above this location (upper height) was less variable and less deflected 287 

than at half-height. The lower stoss vector (furthest downwind), which was higher above the 288 

surface, showed low variability in direction, was aligned more crest-transverse, and had slower 289 

relative speeds than the stoss base location. This indicates flow direction returning to crest-290 

transverse up the stoss of the downwind dune. 291 

Figure 7 shows lee-side flow vector response for two oblique flow events with incident 292 

angles of approximately 110° (event 4, Figure 7a) and 130° (event 5, Figure 7b). These events 293 

show that the amount of flow deflection on the lee slope increased with the angle of obliquity 294 

(approximately doubling with a twofold increase in obliquity angle from transverse) and for the taller 295 

dune (e.g., from 24° to 40° on the taller east transect compared to only 3° to 7° on the shorter west 296 

transect, for the 110° and 130° events, respectively). Thus, under the same incident flow 297 Comment [IW7]: This sentence needs simplification 
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conditions, deflection of oblique flows was greater over the larger dune and the angle of deflection 298 

on the lee slope was approximately the same as the angle from transverse. For example, for event 299 

4 with an angle of ~20° from transverse over the crest of the east dune transect (i = 111°), the flow 300 

was deflected ~25° (d = 135°), while for event 5, with an angle of ~40° from transverse over the 301 

crest (i = 131°), the flow was deflected 40° (d = 171°). Overall directional variability for both events 302 

is very low (SD° < 11°) compared to the transverse condition (SD° ??). Flow vector orientations in 303 

the lee slope through stoss slope regions show that flow deflection was greatest near the surface 304 

(reaching a maximum at the stoss base surface location) and decreased with height and beyond 305 

the interdune toward the downwind dune. The half height sensor on the west transect 306 

malfunctioned partway through data collection, so those vectors are not shown for events 4–7 307 

inclusive (Figures 7, 8). 308 

Flow vector response for highly oblique to crest-parallel events 6 (i ≈ 145º) and 7 (i ≈ 0º) are 309 

shown in Figure 8. Event 6 exhibited a similar deflection trend as events 4 and 5. Although the 310 

absolute magnitudes of deflection angles were greater, they generally decreased with height and 311 

distance beyond the interdune. Lee slope flow deflected by about 30° on the taller (east) dune (i = 312 

146º, d = 177º) but was deflected negligibly over the shorter (west) dune (i = 146º, d = 147º). 313 

Normalized windspeeds elsewhere in the lee (from anemometer-only locations that could not be 314 

converted to vectors, see Figure 5a for velocity profiles) were faster than crest values at all 315 

locations beyond the lee slope on the east transect and in the immediate lee and interdune regions 316 

on the west transect. Near-surface lee slope speeds during this event were 0.59 and 0.84 that of 317 

the outer flow on east and west transects respectively. Speeds and flow deflection were greatest 318 

within the interdune to stoss base regions on both transects, which indicates strong along-dune 319 

flow within the interdune corridor. 320 

Flow direction for event 7 (Figure 8b) was aligned approximately parallel to the crest and 321 

unlike all other events was from the west (i = 2º-3º). All lee-side locations recorded faster flow than 322 

Comment [D8]: OK Ian – does this make sense? I 
changed the wording a fair bit from the thesis (p94). Or 
maybe we should just delete these half dozen lines b/c 
as you said in a comment it’s repetitious? What’s not 
clear to me is what the smaller dune (and not that 
much smaller) produced such negligible deflection. 
Comment [IW9]: Let’s just leave for reviewer to 
decide. 
Comment [D10]: This bit was lifted direct from your 
thesis, but I don’t understand it at all. You don’t specify 
what the directional variability is for the transverse 
conditions, but from Table 1, it appears to be ranging 
from 2.6-5.8. What’s odd about it, is that there is 
nothing like 11deg for SD in that table. There is a value 
of 0.11 for CV. Did you mean CV instead of SD? Check 
out Table 1 and see what you think. 
Comment [IW11]: Beats me.  Perhaps an error in my 
earlier interp of the text?  I do recall that directional 
variability was still low, regardless, so update with SD 
values in the table, ok? 



 

 12 

those near the crest surface and the west transect showed lee-side deflection back toward the 323 

dune and up the lee slope on the west transect (i = 3º, d = 346º). This pattern is similar to those 324 

documented by Tsoar (1983: 570, Figure 4) over a linear (seif) dune. 325 

 326 

DISCUSSION 327 

Lee-side flow deflection and secondary flow structures 328 

Flow-form interactions over complex dune terrain generate significant alterations in the 329 

magnitude and direction of near-surface sand-transporting winds. This results from topographically 330 

forced variations in the pressure field over dunes and creates various secondary flow patterns 331 

including flow accelerations on the stoss slope; flow separation, expansion, and reversal in the 332 

lee; and directional variations of attached, near-surface flow that is deflected or steered in 333 

directions that differ significantly from the regional wind (Walker and Nickling, 2002; Walker et 334 

al., 2006; Walker et al., 2009). Research on flow over coastal foredunes has shown that, 335 

generally, winds approaching at an oblique angle tend to be deflected toward crest-normal 336 

(Svasek and Terwindt, 1974; Jackson, 1977; Rasmussen, 1989; Arens et al., 1995) and that this 337 

steering effect is greatest when incident angles are between 30 to 60° to the crestline. Winds 338 

with approach angles less than 30° (i.e., highly oblique) are often deflected parallel to the crest 339 

(e.g. Mikkelsen, 1989; Arens et al., 1995). Crestward steering on the stoss slope occurs 340 

essentially because perturbation pressures and resulting topographic flow accelerations 341 

increase the crest-normal (transverse) component of local flow vectors up the stoss slope 342 

(Jackson, 1977; Tsoar, 1983). Beyond the crest, abrupt changes in surface slope and potential 343 

flow separation, expansion, and deceleration cause a reduction in the transverse component of 344 

local flow vectors that, in turn, causes flow to deflect in a more crest-parallel direction (Tsoar, 345 

1983; Walker, 1999). The morphodynamic implications of flow deflection are twofold. First, 346 

under increasingly oblique (i.e., less crest-transverse) conditions, the dune appears less steep 347 

Comment [IW12]: I think there is a walker et al ref 
2006 maybe that also shows this and should be added. 

Comment [IW13]: Again, I think one of our PEI 
papers also showed this… don’t have access to them 
at the mo, however.  Add if you can. 

Comment [IW14]: Svasek and Terwindt 1974 may 
also have said this… I should have a copy or could find 
online.  Can’t log in to library website for pDF access 
for some damn reason and my Mendeley won’t work 
tonight either… ugh. 



 

 13 

to oncoming flow, which results in less flow acceleration up the stoss slope and, in turn, reduced  348 

sand transport potential up the stoss slope. Second, incident flow angle determines the effective 349 

fetch for sand transport development (see discussion in Walker et al., 2006). In coastal settings, 350 

offshore to oblique onshore winds can be steered alongshore on the beach and even deflected 351 

back toward the foredune, resulting in sand being cycled along the beach and back to the dune, 352 

thus promoting dune maintenance (Walker et al., 2006).  353 

This study shows that the degree of flow deflection is a function of the incident wind angle 354 

and dune form, which corresponds with observations by Sweet and Kocurek (1990) and Lancaster 355 

(1995). More transverse incident winds appear to be deflected more than airflow aligned oblique or 356 

parallel to the crest. This results from steeper pressure gradients over the dune under more 357 

transverse flow conditions. In other words, the apparent ‘steepness’ (or aspect ratio) of the dune as 358 

experienced by incoming airflow varies significantly depending on the incidence angle and dune 359 

height; airflow perpendicular to the crest will encounter a much steeper dune and will generate a 360 

larger separation cell than will airflow that approaches at more oblique incident angles (Baddock et 361 

al., 2011; Walker and Hesp, In press). This can result in less flow deceleration in the lower stoss 362 

and reduced transport potential up the stoss slope (see discussion in Walker et al., 2006). In 363 

this study, lee-side flows were fastest when incident flow over the crest was crest-parallel, 364 

reflecting a lower aspect ratio and reduced, or non-existent separation (and recirculation) cell. 365 

Over transverse dunes, Sweet and Kocurek (1990) documented that lee slope windspeeds 366 

approached zero as incident angle became more transverse (i.e., as i approaches 90°) due to 367 

flow separation. Lee slope speeds increased rapidly between i = 70 to 90°. Sweet and Kocurek 368 

(1990) concluded that dune shape was an important control on lee flow response such that dunes 369 

with low aspect ratios and/or oblique incident winds favoured attached and relatively high lee-side 370 

surface windspeeds while dunes with high aspect ratios and/or transverse incident flows 371 

demonstrated lower speeds (e.g. Best and Kostaschuk, 2002). In terms of sediment transport, 372 
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Sweet and Kocurek (1990) observed that deflected lee flow speeds were 60-80% of crest speeds 373 

and were associated with along-slope sediment transport. Transverse flows favoured sediment 374 

avalanching and fallout 375 

Near-surface flow patterns for a full range of events spanning transverse to highly oblique 376 

incident wind conditions documented in this study show that lee-side flow deflection often aligned 377 

sub-parallel to the crest. At three sites in the Netherlands, Arens et al. (1995) found similar 378 

deflection to crest-parallel in the lee of coastal foredunes during offshore winds, but towards crest-379 

normal during onshore winds. Over a 12-m high, steep foredune in Prince Edward Island, Canada, 380 

Walker et al. (2009) observed significant onshore steering of near-surface flow towards crest-381 

normal. In an earlier study on a nearby 9-m high foredune, Walker et al. (2006) observed 382 

offshore to oblique onshore winds being steered alongshore on the beach and even deflected 383 

back toward the foredune, resulting in sand being cycled along the beach and back to the dune, 384 

thus promoting dune maintenance. A series of studies at Magilligan Strand, Northern Ireland, 385 

have shown that lee-side flow response is also governed by variations in morphology as well as 386 

incident flow angle (Lynch et al., 2008; 2010; Jackson et al., 2011), where attached and 387 

deflected lee-side flow is thought to arise when the abrupt break in slope required for separation 388 

is absent. Lynch et al. (2010) observed varying flow response over dunes of different heights 389 

and shapes. A tall (11.4-m) sharp-crested foredune produced flow separation and a recirculation 390 

cell. A smaller (6.6-m tall), rounded foredune exhibited attached lee-side flow that was deflected 391 

towards crest-parallel, while flow over a lower (4.6-m tall), incipient foredune exhibited no flow 392 

deflection in the lee. In an earlier study, Lynch et al. (2008) demonstrated that offshore winds 393 

that result in flow reversal do not significantly contribute to sand drift potential. Instead, it was 394 

winds deflected alongshore that were associated with the most saltation activity. They conclude 395 

therefore, that these deflected flows should be considered a key variable when linking micro- 396 

and meso-scale sediment transport studies. 397 
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In this study, a twofold increase in the amount of lee-side flow deflection for obliquity angles 398 

in the range of 20 to 40° was observed (Figure 8). Others have found that the magnitude of 399 

deflected flow on the lee slope is a cosine function of the angle of incidence and crest speed 400 

(Tsoar, 1983; Tsoar et al., 1985; Sweet and Kocurek, 1990; Lancaster, 1995). A wind tunnel study 401 

by Tsoar et al. (1985) explored the influence of 3 incident flow angles (15°, 25°, and 35° relative to 402 

the crest) on lee-side flow separation and deflection over linear dunes. They found that lee-side 403 

flow deflects from the incident direction toward that aligned with the crest and that sediment 404 

transport patterns follow this deflection pattern. Earlier field research by Tsoar (1983) showed that 405 

the rate of sand transport increased for more oblique angles when i < 40° and that deposition on 406 

the lee flank of a longitudinal (seif) dune occurred as incident flow angles became more transverse. 407 

Over transverse dunes, Sweet and Kocurek (1990) documented that lee slope windspeeds 408 

approached zero as incident angle became more transverse due to flow separation. Lee slope 409 

speeds increased rapidly as i approached 70° and Sweet and Kocurek (1990) concluded that dune 410 

shape was an important control on lee flow response such that dunes with low aspect ratios and/or 411 

oblique incident winds favoured attached and relatively high lee-side surface windspeeds, while 412 

dunes with high aspect ratios and/or transverse incident flows demonstrated lower speeds. These 413 

observations are similar to those made in fluvial environments (e.g. Best and Kostaschuk, 2002; 414 

Kostaschuk et al., 2009), where flow over low angle dunes tends to remain attached and flow 415 

reversal is relatively rare. Compiling data from several rivers, Kostaschuk (2005) concluded that 416 

deposition of suspended sediment in the trough and on the dune lee side acts to reduce dune 417 

height and lower the lee slope angle, thus underscoring earlier studies (e.g. Smith and McLean, 418 

1977; Kostaschuk and Villard, 1996; Kostaschuk, 2000) that showed that increased suspended 419 

sand transport relative to bedload, was associated with flatter dunes and lower lee slope angles. In 420 

terms of aeolian sediment transport, Sweet and Kocurek (1990) observed that deflected lee flow 421 

speeds were 60 to 80% of crest speeds and were associated with appreciable along-slope 422 
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sediment transport, whereas, transverse flows favoured sediment avalanching and fallout 423 

deposition in weak back-eddy flows.  424 

In terms of three-dimensional flow behaviour, results presented here indicate that lee-side 425 

flow deflection is greatest at the surface near the base of the lee slope and on the interdune 426 

corridor upwind of flow re-attachment where maximum flow expansion and deceleration occur. In 427 

this region, the crest-parallel component of the net flow vector has a greater effect on flow 428 

deflection, thereby promoting more along-dune oriented flow within the separation cell. As surface 429 

flow accelerates beyond re-attachment, vectors gradually deflect back toward bedform-normal up 430 

the stoss slope of the downwind dune in response to increases in the crest-transverse component 431 

of the net flow vector. This rather simple deflection mechanism explains why, in part, longitudinal 432 

flows are observed in the lee (Sharp, 1966; Tsoar, 1983; Tsoar et al., 1985) and, in this case, 433 

under relatively transverse incident flow conditions.  434 

The lee-side flow responses and flow visualizations described above were used to compile 435 

a differential flow deflection model in the lee of transverse and relatively straight-crested dunes, 436 

which is demonstrated conceptually in Figure 9.  Based on several non-continuous measurements, 437 

which is still common in aeolian research as continuous profiling technologies do not yet exist, this 438 

model assumes a linear change in deflection and flow speed with increases in height above the 439 

surface. In this conceptual model, flow deflection on the lee slope occurs toward an angle that is 440 

more oblique than that of the incident wind, thereby increasing the bedform-parallel component of 441 

secondary flow and, if competent, sand transport (discussed further in the following section). Flow 442 

vectors and visualization observations both show that the amount of lee-side flow deflection 443 

decreases with height above the surface such that flow at/above dune height is less deflected than 444 

near-surface flows in response to relatively faster overshot flow above the separation cell (c.f. 445 

Walker and Nickling, 2002).  Hence, dune-parallel components of the local flow vectors are 446 

proportionately less. The relative amount of deflection also increases with incident speed and dune 447 
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height due to the greater overall speed differentials (i.e., greater flow sheltering) that occur in the 448 

separation region. Under transverse flow conditions, a high-speed shear zone extends further 449 

leeward with increased incident speed, causing the point of maximum deflection above dune height 450 

to progress downwind (see Figure 4). Thus, maximum deflection occurs closer to the dune near 451 

the surface and further downwind in the upper wake region (approximately over the toe of the 452 

downwind dune). This differential deflection mechanism likely contributes to the development of 453 

roller and/or helical vortices in the separation region. Thus, even under relatively transverse flow 454 

conditions, longitudinal components of secondary flow patterns may contribute significantly to lee-455 

side momentum transfers and must be considered for characterization and modeling of flow and 456 

sediment transport continuity.  457 

Results from other studies show that lee-side flow shifts from a closed-loop recycling roller 458 

vortex to a longitudinal (along-dune) helix (c.f. Walker and Nickling, 2002) under slight increases in 459 

flow obliquity from transverse (i.e. from i = 90 ±10° to ±20°). For instance, profiles and vectors for 460 

event 4 (i = 110°, Figures 5, 7) suggest that flow is separated and has a strong deflected 461 

component in the lee. However, the separation region appears to be less extensive, particularly 462 

over the larger (east) dune transect. Qualitative flow streamer visualization observations under 463 

similar conditions (not shown here) indicated that the helical vortex was not only less extensive, but 464 

also less coherent (i.e. intermittent and poorly developed). Although a recycling helical pattern was 465 

observed, it is suggested that this pattern is an intermittent transitional phase between the roller 466 

vortex and the attached, deflected flow of more oblique incident conditions. This does not detract, 467 

however, from the observation that both deflected along-dune and recycling upslope flow and 468 

sediment transport may occur under relatively transverse incident flows (i.e. 70 < i ≤ 110°) (c.f. 469 

Walker, 1999). It follows that, under transporting windspeeds, these patterns could contribute 470 

appreciably to dune sediment dynamics, morphology, and migration.  471 

 472 
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Implications for dune migration 473 

The lee-side flow patterns discussed above have important implications for sediment mass 474 

transport patterns and the resulting migration of closely spaced transverse dune forms. This study 475 

and concurrent research on sand transport patterns by Walker (1999) at the same site shows that 476 

competent, deflected secondary interdune flow patterns can transport appreciable amounts of 477 

sediment parallel to the crest along the interdune corridor, even under relatively transverse flow 478 

conditions. Morphodynamically, then, these patterns may have a significant influence on the 479 

direction of dune migration. For instance, along-dune oriented sediment transport and ripple 480 

migration were observed during a high-speed storm event that caused migration of the dune crest 481 

by approximately 1.25 m downwind (Figure 10). Direct measurements of lee-side sediment flux 482 

during subsequent transporting events at the same study site (Walker, 1999) suggest a three-483 

dimensional sediment budget that, under relatively consistent conditions, would promote 484 

migration in an oblique direction, rather than in a bedform-normal direction (e.g. Rubin and 485 

Hunter, 1987; Rubin and Ikeda, 1990; Lancaster, 1991) (Figure 10). This study shows that in 486 

addition to conventional fallout deposition and lee slope avalanching (Anderson, 1988; 487 

Anderson and Walker, 2006), other longitudinally oriented transport mechanisms (e.g. along-488 

dune ripple migration, deflected interdune saltation and fallout transport) contribute to 489 

transverse dune migration and morphodynamics.  490 

Figure 11 is a stylized empirical model of near surface flow (solid arrows) and deflected 491 

sediment transport vectors (dashed short arrows) that occur in the lee of relatively straight 492 

transverse dunes.  Sediment transport vectors were are interpreted and/or directly measured 493 

(from ripples and/or trap measurements, see Walker, 1999) and their patterns represent where 494 

sediment mass is directed during the respective driving incident flow conditions.  As incident flow 495 

becomes less transverse to the crest, lee-side separation cells become less extensive, and flow 496 

remains attached for nearly crest-parallel incident flows (e.g. i = 140°-160°). Similarly, as incident 497 

Comment [IW29]: At least 2 key studies by the 
Nickling, Lancaster and Mckenna neuman group need 
to be cited here… again, I think they were cited in the 
Anderson and walker paper or in the Treatise chapter. 

Comment [IW30]: Again, check fig numbers because 
in the files, fig 10 shows the deflection and transport 
patterns (with implications we’re discussing here).  Fix 
please. 

Comment [IW31]: Remove the text part, leave only 
Walker 1999 in brackets. 



 

 19 

flow becomes less transverse, flow speeds in the lee increase due to the apparent reduction in 498 

dune aspect ratio. The effectiveness or overall contribution of these mechanisms, and their 499 

relation to migration rates, depends though on secondary flow magnitude, duration, and incident 500 

direction and requires more extensive research. Future work should also incorporate issues of 501 

dune spacing, as Baddock et al. (2007) have shown that interdune dynamics are strongly 502 

influenced by interactions between reattachment and downwind dune stoss positions. 503 

 504 

CONCLUSIONS 505 

In order to conserve fluid momentum and sediment mass, deflected components of 506 

secondary flow and interdune sand transport must be considered in approaches to model airflow 507 

and sediment transport over dunes. Flow separation, reversal, and lateral deflection cause three-508 

dimensional variations that, in terms of a budget approach, represent a deficit of fluid mass and 509 

transported sediment from simple two-dimensional models. Even under relatively transverse flow 510 

conditions, where lee-side flow above the separation cell and downstream of re-attachment may 511 

travel in an essentially streamwise direction, lateral deflection occurs in near-surface surface flow 512 

and resulting sediment transport. Thus, budget approaches to conceptualizing flow and net 513 

sediment transport over dunes should not be viewed simply as a two-dimensional system of 514 

bedform-normal components. This study has demonstrated that flow over transverse dunes is 515 

deflected in the lee to a degree that increases as incident flow becomes less transverse. As flow 516 

becomes increasingly oblique to the crest, the effective aspect ratio (and, hence, form roughness) 517 

encountered by the wind decreases and patterns of flow acceleration, separation, and potential 518 

recirculation on sediment transport are diminished. Further, oblique incident conditions offer a 519 

greater fetch. The implications for sediment transport and dune migration are that transport 520 

potential increases with increasing flow obliquity (towards crest-parallel) compared with transverse 521 

flows, and that transverse dunes can migrate sideways.  522 
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FIGURE CAPTIONS 523 

Figure 1: Map of study area showing location of the sampling array within transverse ridges on the 524 
northern end of the Silver Peak dunefield in western Nevada, USA. 525 

Figure 2: Instrument deployment over west and east sampling transects including location of the 526 
flow visualization tower array. Instrument profiles characterize flow within discrete flow 527 
regions shown in the upper figure. Vertical axis indicates height of instruments above the 528 
lowest elevation in the interdune.  529 

Figure 3: Study site setup. Unwind view (a) of instrument arrays (E=east, W=west), observation 530 
tower (O), flow streamer towers (F); b) dense spacing of vanes and anemometers in the lee 531 
on the east transect; c) view of transverse ridges looking NE into the study area (from 532 
Walker and Nickling, 2002) 533 

Figure 4: Flow visualization methods. a) 12-m observation tower with perch for aerial viewing of 534 
streamer response; b) smoke tracer visualization of lee-side flow patterns and extent of 535 
separation cell; c) flow streamer towers extending 9 m leeward from the crest. Five heights 536 
relative to the dune are identified by different symbols. Observation of streamer deflection 537 
and smoke patterns were used to complement limited wind vane data in the lee. 538 

Figure 5: Time-averaged wind speed (u/u10h) profiles for a series of events (2, 4, 7) spanning 539 
transverse to crest-parallel flow conditions. Note that vertical axis shows sampling heights 540 
relative to underlying surface not the interdune datum. 541 

Figure 6: Time-averaged flow vectors for events 1 through 3. Upper values indicate direction (SD) 542 
and lower italicised values are speed and [coefficient of variation]. Vectors show directions 543 
at 3 levels: surface, crest height (± 30 cm), and at half dune height. White arrows at crest 544 
locations are at outer flow (5.2h on east and 4.6h on west profiles). Dashed vertical line 545 
shows lee slope base and interdune 546 

Figure 7: Time-averaged flow vectors for events 4 and 5. Upper values indicate direction (SD) and 547 
lower italicised values are speed and [coefficient of variation]. Vectors show directions at 3 548 
levels: surface, crest height (± 30 cm), and at half dune height. White arrows at crest 549 
locations are at outer flow (5.2h on east and 4.6h on west profiles). Dashed vertical line 550 
shows lee slope base and interdune. 551 

Figure 8: Time-averaged flow vectors for events 6 and 7. Upper values indicate direction (SD) and 552 
lower italicised values are speed and [coefficient of variation]. Vectors show directions at 3 553 
levels: surface, crest height (± 30 cm), and at half dune height. White arrows at crest 554 
locations are at outer flow (5.2h on east and 4.6h on west profiles). Dashed vertical line 555 
shows lee slope base and interdune. 556 

Figure 9: Differential deflection of lee-side flow over closely spaced dunes for various incident 557 
angles. Vectors are proportionally sized to normalized windspeed and show directional 558 
variation from the surface (black) to above dune height (grey). Intermittent (white) and 559 
transitional (lines) vectors are also shown. 560 

Figure 10: Evidence for lee-side sediment transport processes over a transverse dune in the Silver 561 
Peak dunefield, Nevada. A) active flow separation, suspended fallout, and deflected ripples 562 
formed under approximately crest-transverse flow (i ≈ 90°); b) along-dune oriented ripples 563 
on the lee slope looking east; c) small, bifurcated ripples on the upper lee slope and larger, 564 
coarse granule ripples on the base (5 cm lens cap for scale). All photos taken in May 1997. 565 
Photos b and c were taken after the transporting event shown in a. 566 

Comment [IW37]: Update as needed. 



 

 21 

Figure 11: Lateral diversion of secondary lee-side flows and surface winds in response to various 567 
incidence angles over closely spaced dunes. Short arrows indicate sediment transport 568 
direction and dashed arrows indicate intermittent transport. 569 

570 



 

 22 

REFERENCES 571 

Anderson JL, Walker IJ. 2006. Airflow and sand transport variations within a backshore–parabolic 572 
dune plain complex: NE Graham Island, British Columbia, Canada. Geomorphology 77: 17-34. 573 
DOI: 10.1016/j.geomorph.2005.12.008 574 
Anderson RS. 1988. The pattern of grainfall deposition in the lee of aeolian dunes. Sedimentology 575 
35: 175-188. DOI: 10.1111/j.1365-3091.1988.tb00943.x 576 
Arens SM, Van Kaam-Peters HME, Van Boxel JH. 1995. Air flow over foredunes and implications 577 
for sand transport. Earth Surface Processes and Landforms 20: 315-332. DOI: 578 
10.1002/esp.3290200403 579 
Baddock M, Livingstone I, Wiggs G. 2007. The geomorphological significance of airflow patterns in 580 
transverse dune interdunes. Geomorphology 87: 322-336. DOI: 10.1016/j.geomorph.2006.10.006 581 
Baddock MC, Wiggs GFS, Livingstone I. 2011. A field study of mean and turbulent flow 582 
characteristics upwind, over and downwind of barchan dunes. Earth Surface Processes and 583 
Landforms 36: 1435-1448. DOI: 10.1002/esp.2161 584 
Bagnold RA. 1941 The Physics of Blown Sand and Desert Dunes. Muthuen: London 585 
Best J, Kostaschuk R. 2002. An experimental study of turbulent flow over a low-angle dune. 586 
Journal of Geophysical Research 107: 3135. DOI: 10.1029/2000jc000294 587 
Bullard JE, Thomas DSG, Livingstone I, Wiggs GFS. 1996. Wind energy variations in the 588 
southwestern Kalahari Desert and implications for linear dunefield activity. Earth Surface 589 
Processes and Landforms 21: 263-278. DOI: 10.1002/(sici)1096-9837(199603)21:3<263::aid-590 
esp627>3.0.co;2-i 591 
Carson MA, MacLean PA. 1985. Storm-controlled oblique dunes of the Oregon coast: Discussion 592 
and reply. Geological Society of America Bulletin 96: 409-410. DOI: 10.1130/0016-593 
7606(1985)96<409:sodoto>2.0.co;2 594 
Carson MA, MacLean PA. 1986. Development of hybrid aeolian dunes: The William River dune 595 
field, Northwest Saskatchewan, Canada. Canadian Journal of Earth Sciences 23: 1974-1990. DOI: 596 
10.1139/e86-183 597 
Cooke RU, Goudie AS, Warren A. 1993 Desert Geomorphology. UCL Press: London 598 
Frank A, Kocurek G. 1996. Toward a model for airflow on the lee side of aeolian dunes. 599 
Sedimentology 43: 451-458. DOI: 10.1046/j.1365-3091.1996.d01-20.x 600 
Fryberger SG, Dean G. 1979. Dune forms and wind regimes. In A Study of Global Sand Seas, 601 
McKee E (eds), pp. 137-169. U.S. Geological Survey Professional Paper 1052. 602 
Gaylord DR, Stetler LD. 1994. Aeolian-climatic thresholds and sand dunes at the Hanford site, 603 
south-central Washington, U.S.A. Journal of Arid Environments 28: 95-116. DOI: 10.1016/s0140-604 
1963(05)80041-2 605 
Glennie KW. 1970 Desert Sedimentary Environments. Elsevier: Amsterdam 606 
Hanna SR. 1969. The formation of longitudinal sand dunes by large helical eddies in the 607 
atmosphere. Journal of Applied Meteorology 8: 874-883. DOI: 10.1175/1520-608 
0450(1969)008<0874:tfolsd>2.0.co;2 609 
Hesp P, Hyde R, Hesp V, Zhengyu Q. 1989. Longitudinal dunes can move sideways. Earth 610 
Surface Processes and Landforms 14: 447-451. DOI: 10.1002/esp.3290140510 611 



 

 23 

Hesp P, Walker IJ. In press. Fundamentals of Aeolian Sediment Transport: Coastal dunes. In 612 
Aeolian Geomorphology, Treatise on Geomorphology,(eds), 11. Elsevier, Oxford. 613 
Hesp PA. 1981. The formation of shadow dunes. Journal of Sedimentary Research 51: 101-112. 614 
DOI: 10.1306/212f7c1b-2b24-11d7-8648000102c1865d 615 
Hesp PA. 1983. Morphodynamics of incipient foredunes in New South Wales, Australia. In Eolian 616 
Sediments and Processes, Brookfield ME, Ahlbrandt TS (eds), pp. 325-342. Elsevier, Amsterdam. 617 
Hesp PA, Hyde R. 1996. Flow dynamics and geomorphology of a trough blowout. Sedimentology 618 
43: 505-525. DOI: 10.1046/j.1365-3091.1996.d01-22.x 619 
Howard AD. 1985. Interaction of sand transport with topography and local winds in the northern 620 
Peruvian coastal desert. In Proceedings of International Workshop on the Physics of Blown Sand, 621 
Barndorff-Nielsen OE, Møller JT, Rasmussen KR, Willetts BB (eds). Aarhus, Denmark, 511-544. 622 
Hunter RE, Richmond BM, Alpha TR. 1983. Storm-controlled oblique dunes of the Oregon coast. 623 
Geological Society of America Bulletin 94: 1450-1465. DOI: 10.1130/0016-624 
7606(1983)94<1450:sodoto>2.0.co;2 625 
Hunter RE, Richmond BM, Alpha TR. 1985. Storm-controlled oblique dunes of the Oregon coast: 626 
Discussion and reply. Geological Society of America Bulletin 96: 410. DOI: 10.1130/0016-627 
7606(1985)96<410:sodoto>2.0.co;2 628 
Jackson DWT, Beyers JHM, Lynch K, Cooper JAG, Baas ACW, Delgado-Fernandez I. 2011. 629 
Investigation of three-dimensional wind flow behaviour over coastal dune morphology under 630 
offshore winds using computational fluid dynamics (CFD) and ultrasonic anemometry. Earth 631 
Surface Processes and Landforms 36: 1113-1124. DOI: 10.1002/esp.2139 632 
Jackson PS. 1977. Aspects of surface wind behaviour. Wind Engineering 1: 1-14.  633 
Kocurek G, Lancaster N. 1999. Aeolian system sediment state: theory and Mojave Desert Kelso 634 
dune field example. Sedimentology 46: 505-515. DOI: 10.1046/j.1365-3091.1999.00227.x 635 
Kocurek G, Townsley M, Yeh E, Havholm K, Sweet ML. 1992. Dune and dune-field development 636 
on Padre Island, Texas, with implications for interdune deposition and water-table-controlled 637 
accumulation. Journal of Sedimentary Petrology 62: 622-635. DOI: 10.1306/D4267974-2B26-638 
11D7-8648000102C1865D 639 
Kostaschuk R (2005) Sediment transport mechanics and dune morphology. In: River, Coastal and 640 
Estuarine Morphodynamics: RCEM 2005 (Eds Parker G, Garcia M), pp. 795-803. Taylor & Francis, 641 
London, Urbana, Illinois. 642 
Kostaschuk R, Shugar D, Best J, Parsons D, Lane S, Hardy R, Orfeo O. 2009. Suspended 643 
sediment transport and deposition over a dune: Rio Parana, Argentina. Earth Surface Processes 644 
and Landforms 34: 1605-1611.  645 
Kostaschuk RA. 2000. A field study of turbulence and sediment dynamics over subaqueous dunes 646 
with flow separation. Sedimentology 47: 519-531. DOI: 10.1046/j.1365-3091.2000.00303.x 647 
Kostaschuk RA, Villard P. 1996. Flow and sediment transport over large subaqueous dunes: 648 
Fraser River, Canada. Sedimentology 43: 849-863. DOI: 10.1111/j.1365-3091.1996.tb01506.x 649 
Lancaster N. 1982. Linear dunes. Progress in Physical Geography 6: 476-504. DOI: 650 
10.1177/030913338200600401 651 
Lancaster N. 1983. Controls of dune morphology in the Namib sand sea. In Developments in 652 
Sedimentology, 38, Ahlbrandt TS, Brookfield ME (eds), 38, pp. 261-289. Elsevier, Amsterdam. 653 



 

 24 

Lancaster N. 1991. The orientation of dunes with respect to sand-transporting winds: a test of 654 
Rubin and Hunter's gross bedform-normal rule. Acta Mechanica Supplementum 2: 89-102.  655 
Lancaster N. 1995 The Geomorphology of Desert Dunes. Routledge: London 656 
Lancaster N, Helm P. 2000. A test of a climatic index of dune mobility using measurements from 657 
the southwestern United States. Earth Surface Processes and Landforms 25: 197-207. DOI: 658 
10.1002/(sici)1096-9837(200002)25:2<197::aid-esp82>3.0.co;2-h 659 
Livingstone I, Wiggs GFS, Weaver CM. 2007. Geomorphology of desert sand dunes: A review of 660 
recent progress. Earth-Science Reviews 80: 239-257.  661 
Lynch K, Jackson DWT, Cooper JAG. 2008. Aeolian fetch distance and secondary airflow effects: 662 
the influence of micro-scale variables on meso-scale foredune development. Earth Surface 663 
Processes and Landforms 33: 991-1005. DOI: 10.1002/esp.1582 664 
Lynch K, Jackson DWT, Cooper JAG. 2009. Foredune accretion under offshore winds. 665 
Geomorphology 105: 139-146. DOI: 10.1016/j.geomorph.2007.12.011 666 
Lynch K, Jackson DWT, Cooper JAG. 2010. Coastal foredune topography as a control on 667 
secondary airflow regimes under offshore winds. Earth Surface Processes and Landforms 35: 344-668 
353. DOI: 10.1002/esp.1925 669 
Mabbut JA, Jennings JN, Wooding RA. 1969. The asymmetry of Australian desert sand ridges. 670 
Australian Journal of Science 32: 159-160.  671 
McCauley CK, Breed WJ. 1980. Topographically controlled dune systems on Earth and Mars. In 672 
Aeolian Processes and Landforms: Reports of Planetary Geology Program, Wirth P, Greeley R, 673 
D'Alli RE (eds), TM-81776, pp. 255-56. National Aeronautics and Space Administration. 674 
Mikkelsen HE. 1989 Wind flow and sediment transport over a low coastal dune. GeoSkrifter 32, 675 
Geologisk Institut, University of Aarhus: Aarhus 676 
Muhs DR, Holliday VT. 1995. Evidence of active dune sand on the Great Plains in the 19th century 677 
from accounts of early explorers. Quaternary Research 43: 198-208.  678 
Muhs DR, Maat PB. 1993. The potential response of eolian sands to greenhouse warming and 679 
precipitation reduction on the Great Plains of the U.S.A. Journal of Arid Environments 25: 351-361. 680 
DOI: 10.1006/jare.1993.1068 681 
Muhs DR, Wolfe SA. 1999. Sand dunes of the northern Great Plains of Canada and the United 682 
States. In Holocene climate and environmental change in the Palliser Triangle: a geoscientific 683 
context for evaluation the impacts of climate change on the southern Canadian prairies, Lemmen 684 
DS, Vance RE (eds), pp. 183-197. Geological Survey of Canada, Bulletin 534. 685 
Ould Ahmedou D, Ould Mahfoudh A, Dupont P, Ould El Moctar A, Valance A, Rasmussen KR. 686 
2007. Barchan dune mobility in Mauritania related to dune and interdune sand fluxes. Journal of 687 
Geophysical Research 112. DOI: 10.1029/2006jf000500 688 
Pearce KI, Walker IJ. 2005. Frequency and magnitude biases in the ‘Fryberger’ model, with 689 
implications for characterizing geomorphically effective winds. Geomorphology 68: 39-55. DOI: 690 
10.1016/j.geomorph.2004.09.030 691 
Rasmussen KR. 1989. Some aspects of flow over coastal dunes. Proceedings of the Royal Society 692 
of Edinburgh Section B: Biology 96: 129-147. DOI: doi:10.1017/S0269727000010897 693 
Rubin CM, Ikeda H. 1990. Flume experiments on the alignment of transverse, oblique and 694 
longitudinal dunes in directionally varying flows. Sedimentology 37: 673-684. DOI: 10.1111/j.1365-695 
3091.1990.tb00628.x 696 



 

 25 

Rubin DM. 1990. Lateral migration of linear dunes in the Strzelecki Desert, Australia. Earth Surface 697 
Processes and Landforms 15: 1-4. DOI: 10.1002/esp.3290150102 698 
Rubin DM, Hunter RE. 1985. Why deposits of longitudinal dunes are rarely recognized in the 699 
geologic record. Sedimentology 32: 147-157. DOI: 10.1111/j.1365-3091.1985.tb00498.x 700 
Rubin DM, Hunter RE. 1987. Bedform alignment in directionally varying flows. Science 237: 276-701 
278. DOI: 10.1126/science.237.4812.276 702 
Sharp RP. 1966. Kelso dunes, Mojave Desert, California. Geological Society of America Bulletin 703 
77: 1045-1073. DOI: 10.1130/0016-7606(1966)77[1045:KDMDC]2.0.CO;2 704 
Smith JD, McLean SR. 1977. Spatially Averaged Flow Over a Wavy Surface. Journal of 705 
Geophysical Research 82: 1735-1746. DOI: 10.1029/JC082i012p01735 706 
Svasek JN, Terwindt JHJ. 1974. Measurements of sand transport by wind on a natural beach. 707 
Sedimentology 21.  708 
Sweet ML, Kocurek G. 1990. An empirical model of aeolian dune lee-face airflow. Sedimentology 709 
37: 1023-1038. DOI: 10.1111/j.1365-3091.1990.tb01843.x 710 
Tsoar H. 1983. Dynamic processes acting on a longitudinal (seif) sand dune. Sedimentology 30: 711 
567-578. DOI: 10.1111/j.1365-3091.1983.tb00694.x 712 
Tsoar H. 2002. Climatic factors affecting mobility and stability of sand dunes. In Proceedings of 713 
ICAR5/GCTE-SEN Joint Conference, Lee JA, Zobeck TM (eds).Center for Arid and Semiarid 714 
Lands Studies: Texas Tech University, Lubbock, 423. 715 
Tsoar H, Illenberger W. 1998. Re evaluation of sand dunes’ mobility indices. Journal of Arid Lands 716 
Studies 7S: 265-268.  717 
Tsoar H, Rasmussen KR, Sorensen M, Willetts BB. 1985. Laboratory studies of flow over dunes. In 718 
Proceedings of International Workshop on the Physics of Blown Sand, Barndorff-Nielsen OE, 719 
Møller JT, Rasmussen KR, Willetts BB (eds). Aarhus, Denmark, 271-300. 720 
Walker IJ. 1999. Secondary airflow and sediment transport in the lee of a reversing dune. Earth 721 
Surface Processes and Landforms 24: 437-448. DOI: 10.1002/(sici)1096-722 
9837(199905)24:5<437::aid-esp999>3.0.co;2-z 723 
Walker IJ. 2000. Secondary airflow and sediment transport in the lee of transverse dunes, 724 
University of Guelph, Guelph, 256 pp. 725 
Walker IJ, Hesp P. In press. Fundamentals of Aeolian Sediment Transport: Airflow over dunes. In 726 
Aeolian Geomorphology, Treatise on Geomorphology,(eds), 11. Elsevier, Oxford. 727 
Walker IJ, Hesp PA, Davidson-Arnott RGD, Bauer BO, Namikas SL, Ollerhead J. 2009. 728 
Responses of three-dimensional flow to variations in the angle of incident wind and profile form of 729 
dunes: Greenwich Dunes, Prince Edward Island, Canada. Geomorphology 105: 127-138. DOI: 730 
10.1016/j.geomorph.2007.12.019 731 
Walker IJ, Hesp PA, Davidson-Arnott RGD, Ollerhead J. 2006. Topographic steering of alongshore 732 
airflow over a vegetated foredune: Greenwich Dunes, Prince Edward Island, Canada. Journal of 733 
Coastal Research 22: 1278-1291. DOI: 10.2112/06a-0010.1 734 
Walker IJ, Nickling WG. 2002. Dynamics of secondary airflow and sediment transport over and in 735 
the lee of transverse dunes. Progress in Physical Geography 26: 47-75. DOI: 736 
10.1191/0309133302pp325ra 737 
Warren A. 1976. Dune trend and the Ekman spiral. Nature 259: 653-654. DOI: 10.1038/259653a0 738 



 

 26 

Wasson RJ, Hyde R. 1983. Factors determining desert dune type. Nature 304: 337-339. DOI: 739 
10.1038/304337a0 740 
Weaver CM, Wiggs GFS. 2011. Field measurements of mean and turbulent airflow over a barchan 741 
sand dune. Geomorphology 128: 32-41.  742 
Wiggs GFS. 2001. Desert dune processes and dynamics. Progress in Physical Geography 25: 53-743 
79. DOI: 10.1177/030913330102500103 744 
Wiggs GFS, Livingstone I, Thomas DSG, Bullard JE. 1996. Airflow and roughness characteristics 745 
over partially vegetated linear dunes in the southwest Kalahari Desert. Earth Surface Processes 746 
and Landforms 21: 19-34. DOI: 10.1002/(sici)1096-9837(199601)21:1<19::aid-esp508>3.0.co;2-p 747 
Wiggs GFS, Thomas DSG, Bullard JE, Livingstone I. 1995. Dune mobility and vegetation cover in 748 
the Southwest Kalahari desert. Earth Surface Processes and Landforms 20: 515-529. DOI: 749 
10.1002/esp.3290200604 750 
Wilson IG. 1972. Aeolian bedforms - their development and origins. Sedimentology 19: 173-210. 751 
DOI: 10.1111/j.1365-3091.1972.tb00020.x 752 
Wolfe SA. 1997. Impact of increased aridity on sand dune activity in the Canadian Prairies. Journal 753 
of Arid Environments 36: 421-432. DOI: 10.1006/jare.1996.0236 754 

 755 
 756 
  757 



 

 27 

Table 1: Summary of wind events recorded on east (E) and west (W) sampling transects ordered 758 
from relatively transverse conditions to crest-parallel flow. Note that flow from the west is 0°, 759 
east is 180°. Data are based on 1 minute averages sampled at 1 Hz (e.g. u5.2h = incident 760 
speed at 3.8 m above east dune crest, SD = standard deviation, CV = coefficient of 761 
variation = SDu5.2h /u5.2h,). All events were recorded on the same day (1997 JD 155).  762 

 763 
 

Event 
Time 

[duration] 
Direction 

(°) 
SD 
(°) 

Incident speed 
(u5.2h, m s-1) 
[average] 

CV 
(ui) 

crest 
speed 
u0.3/u12 

lee-side 
speeds 
u0.3/u12 

1E 19:18 - 19:35 91 4.9 3.8 – 5.5 [4.59] 0.10 0.82 0.41 – 0.59 
1W [0:19] 89 5.8 4.2 – 5.6 [4.84] 0.09 0.90 0.47 – 0.73 
2E 19:43 – 20:01 89 3.5 5.4 – 7.7 [6.54] 0.10 0.79 0.30 – 0.52 
2W [0:20] 88 2.6 5.6 – 8.0 [6.91] 0.10 0.87 0.37 – 0.53 
3E 21:03 - 21:23 89 5.5 7.6 – 10.0 [8.83] 0.09 0.73 0.27 – 0.51 
3W [0:21] 89 5.6 8.2 – 10.5 [9.17] 0.07 0.80 0.35 – 0.50 
4E 
4W 

3:10 - 3:33 
[0:24] 

111 
110 

3.6 
3.5 

3.9 – 5.6 [6.27] 
5.5 – 7.3 [6.52] 

0.09 
0.08 

0.79 
0.88 

0.44 – 0.61 
0.54 – 0.81 

5E 
5W 

4:51 - 5:11 
[0:21] 

131 
130 

3.9 
3.9 

4.7 – 6.7 [5.74] 
4.9 –7.1 [5.98] 

0.11 
0.09 

0.70 
0.77 

0.52 – 0.78 
0.53 – 0.79 

6E 
6W 

2:34 - 2:52 
[0:19] 

146 
146 

5.3 
5.3 

5.4 – 7.6 [6.52] 
5.1 – 7.3 [6.32] 

0.10 
0.10 

0.69 
0.73 

0.59 – 0.80 
0.61 – 0.84 

7E 
7W 

1:29 - 1:35 
[0:07] 

3 
2 

2.6 
3.6 

4.5 – 5.5 [4.96] 
3.9 – 5.1 [4.47] 

0.08 
0.10 

0.60 
0.58 

0.63 – 0.67 
0.59 – 0.75 
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