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 3 
Abstract 4 

Some animal species increase resource acceptance rates in the presence of conspecifics.  Such 5 

responses may be adaptive if the presence of conspecifics is a reliable indicator of resource 6 

quality.  Similarly, these responses could represent an adaptive reduction in choosiness under 7 

high levels of scramble competition.  While high resource quality and high levels of scramble 8 

competition should both favor increased resource acceptance, the contexts in which the 9 

increase occurs should differ.  In this paper, we tested the effect of social environment on egg-10 

laying and aggressive behavior in the walnut fly, Rhagoletis juglandis, in multiple contexts to 11 

determine if increased resource acceptance in the presence of conspecifics was better suited as 12 

a response to increased host quality, or increased competition.  We found that grouped 13 

females oviposit more readily than isolated females when provided small (low quality) 14 

artificial hosts, but not when provided large artificial hosts, indicating that conspecific 15 

presence reduces choosiness.  Increased resource acceptance was observed even when 16 

exposure to conspecifics was temporally or spatially separate from exposure to the resource.  17 

Finally, we found that individuals showed reduced aggression after being housed in groups, as 18 

expected under high levels of scramble competition.   These results indicate that the pattern of 19 

resource acceptance in the presence of conspecifics may be better viewed as a response to 20 

increased scramble competition rather than as a response to public information about resource 21 

quality.   22 

Keywords: Host choice, Social information, Social facilitation, Experience, Rhagoletis, 23 

Conspecific attraction  24 
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Simple models of resource selection, such as ideal free distribution (Fretwell and 25 

Lucas, 1969), predict that animals should be less likely to use resources that are being used by 26 

potential competitors such as conspecifics.  However, in many species, the presence of 27 

conspecifics increases an animal’s propensity to use a resource (Clayton, 1978; Muller et al., 28 

1997; Onyabe and Roitberg, 1997; Prokopy and Roitberg, 2001; Otis et al., 2006).  One 29 

explanation for this pattern is that animals use conspecifics as sources of information about 30 

the quality of resources (Stamps, 1987; Prokopy et al., 2000; Dall et al., 2005).  If individuals 31 

are attracted to or arrested by high quality resources, for example, the presence of 32 

conspecifics can indicate the presence of a high quality resource.   33 

While conspecifics may be a moderately reliable indicator of resource quality, they 34 

should be an even better indicator of competition.  The reliability of information about quality 35 

depends on the ability of conspecifics to identify quality resources, whereas conspecifics 36 

themselves are the sources of competition and should therefore reliably indicate competition 37 

(Slaa et al., 2003).  Therefore, another possibility – less often considered – is that increased 38 

response to resources in the presence of conspecifics reflects an adaptive response to 39 

perceived competition.  While the potential for competition may decrease the attractiveness of 40 

the particular resource item where conspecifics reside, high levels of scramble competition 41 

should favor individuals that are less selective and accept a wider range of resource quality 42 

more readily as the risk of resource depletion increases (Mitchell, 1990; Van Alphen and 43 

Visser, 1990; Visser, 1991; Amita et al., 2010).  For example, Plowright and Landry (2000) 44 

demonstrated that when solitary, pigeons prefer large seeds to small ones but that they more 45 

readily accept small seeds when in the presence of a potential competitor.  46 

Information about resource quality and levels of competition will favor different 47 

patterns of context-dependent response in foragers.  The contexts in which animals alter 48 
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behavior in the presence of conspecifics should depend on what those conspecifics reliably 49 

indicate.  By testing  animals in different contexts, we can determine whether behavioral 50 

responses are better suited as a response to information about competition or as a response to 51 

information about resource quality.  For example, decreased choosiness in response to 52 

perceived competition should result in increased acceptance of low quality resources, but little 53 

change in acceptance of higher quality resources.  Alternatively, if conspecifics indicate 54 

increased resource quality, then any resource associated with conspecifics, regardless of 55 

intrinsic quality, should be perceived as higher quality than it would without conspecifics and 56 

should be accepted more readily.   57 

The location or timing of experience with conspecifics differentially affects the 58 

reliability of information about resource quality and competition.  Conspecifics observed near 59 

a particular resource provide reliable information about that particular resource, but less 60 

reliable information about the quality of other resources.  Therefore, if individuals are 61 

primarily using conspecifics as indicators of resource quality, their response to the presence of 62 

conspecifics should be primarily restricted to resources directly associated with conspecifics.  63 

Alternatively, when conspecifics are used as indicators of competition, then increased 64 

propensity to use resources should be seen at sites away from conspecifics, and due to recent 65 

previous encounters with conspecifics.  66 

Resource quality and competition should also differentially affect aggressive behavior.  67 

Animals should be more willing to invest in any territorial behavior required to monopolize 68 

resources of particularly high quality, but less willing if levels of scramble competition are 69 

high (and the resource will be visited by multiple potential competitors)(Dubois et al., 2003).  70 

Therefore, being rearedprevious experience with conspecifics should increase aggressive 71 
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behavior if those conspecifics indicate resource quality, but decrease aggressive behavior, if 72 

those conspecifics indicate high levels of scramble competition. 73 

In this paper, we test the context-dependent effects of conspecifics on oviposition 74 

decisions in the tephritid fruit fly, Rhagoletis juglandis, a species in which this phenomenon 75 

has not previously been studied.  Tephritid fruit flies are a useful system to study the relative 76 

importance of conspecifics as potential competitors and as indicators of resource quality.   77 

Many species in this family lay their eggs in ripening fruit, providing a situation in which the 78 

presence of flies on a fruit indicate the quality of that fruit and/or the risk of host depletion in 79 

a tree.   In several species, females have been shown to lay eggs more readily when housed in 80 

groups (e.g., Prokopy and Bush, 1973a; Robertson et al., 1995; Rull et al., 2003).  However, 81 

these experiments are typically conducted in contexts in which an increased response is 82 

predicted regardless of what information conspecifics provide.  Using  R. juglandis, we tested 83 

for the effect of conspecifics on resource acceptance and aggressive behavior in different 84 

contexts, (i.e. on different quality hosts, and when conspecifics are spatially or temporally 85 

separated from hosts) to determine whether context-dependent patterns of the effect are better 86 

viewed as a response to information about competition or about quality.    87 

 88 

METHODS 89 

Natural History 90 

In southern Arizona, Rhagoletis juglandis uses Arizona walnut, Juglans major, as its 91 

host.  There is a single generation per year. Adult flies emerge between July and September, 92 

depending on elevation, from puparia in the soil beneath their natal tree.  Females begin 93 

ovipositing in fruit one or two weeks after emergence.  After oviposition, females deposit a 94 
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host-marking pheromone (HMP) which deters oviposition (Nufio and Papaj, 2004a).  95 

Nonetheless, females show a strong propensity to lay eggs within previously-established 96 

oviposition cavities (Papaj, 1993 (Papaj, 1993; Lalonde and Mangel, 1994; Papaj, 1994), 97 

1994; Lalonde and Mangel, 1994).  Eggs hatch within four days, and larvae develop over the 98 

course of two weeks.  Survival is higher and final size larger when larvae develop in larger 99 

walnuts (Nufio and Papaj, 2001).  Development is usually completed after the fruit fall to the 100 

ground, with larvae then leaving the fruit to form puparia in the soil beneath the natal tree.  101 

Puparia enter an obligate diapause until the following year. 102 

 103 

General Methods 104 

 All flies were collected as larvae inhabiting fruit that had fallen from J. major trees in 105 

southern Arizona.  After pupation, flies were kept at 4°C for at least 9 months and warmed to 106 

room temperature 4-6 weeks prior to each experiment.  As adult flies began to emerge, pupae 107 

were transferred to 3.8 L plastic containers (emergence containers), held at 28° C on a 14:10 108 

light:dark cycle, and provided sugar cubes, powdered hydrolyzed yeast, and distilled water 109 

(delivered in a cotton wick) ad libitum.  No hosts were provided at this time.   110 

Experiments 1, 2 and 4 were conducted in 473 mL clear plastic cups (SOLO brand) 111 

topped with 10 cm petri dishes (experimental cups).  Flies in all experimental cups were 112 

provided with water and a strip of paper dipped in a solution of hydrolyzed yeast and sugar.  113 

All cups were surrounded by white cardboard barriers to minimize extraneous visual stimuli.  114 

Mortality was relatively low (< 10%) and not obviously biased towards particular treatments 115 

or collection locations. 116 
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Oviposition behavior was assayed in experiments 1 through 3 using 25 and 37 mm 117 

diameter artificial hosts wrapped in Parafilm® as artificial walnut hosts.   Spheres were 118 

prepared using a ratio by weight of 1:2:40 agar to sucrose to water.  Two drops of yellow and 119 

1 drop of green food coloring (Kroger brand) were added for every 200 mL of water.  The 120 

solution was heated until boiling and poured into silicone molds (Chicago School of Mold-121 

Making, Chicago, IL).  Spheres were hardened at 4°C and wrapped individually in Parafilm® 122 

(2.5 or 4.0 cm2 pieces stretched over each sphere and twisted into a ‘stem’).   123 

 124 

Experiment 1: Do conspecifics affect oviposition decisions? 125 

Flies used in this experiment were collected from the town square of Patagonia, AZ 126 

(31°32’24”N 110°45’14” W).  Female flies that had emerged 2 to 3 weeks earlier were 127 

removed from emergence cages and placed into experimental cups in one of two treatments: 128 

1) held individually, or 2) held in groups of 3. Flies were allowed to acclimate for 24 hours, 129 

after which 25 mm diameter artificial hosts were suspended from the top of each cup.  130 

Artificial hosts and flies were removed after 48 hours.  Flies were frozen at -10°C.  The 131 

number of clutches and eggs laid in each artificial host were counted (eggs within clutches 132 

laid at the same site occurred in distinct groups, entering the sphere at different angles).   133 

Flies were dissected under stereoscopy and digital images of wings and dissected 134 

ovaries were captured with a Canon EOS 20D camera.  We counted all fully-yolked and 135 

chorionated oocytes (Stage E of egg maturation in Lachmann and Papaj 2001).  Furthermore, 136 

because body size and oocyte number are known to be positively correlated, we used ImageJ 137 

(NIH) software to measure the length of the discal medial cell of the wing.  This wing 138 

measure was used as an estimate of female size because previous laboratory investigations 139 
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demonstrated that it was strongly correlated with other indicators of female size such as 140 

thorax and head width and femur length (H. Alonso-Pimentel, unpubl. data).   141 

This experiment was performed in three blocks (72 hour periods) across several 142 

weeks.  No block or block*treatment effects were seen, so data were pooled across blocks.  143 

Binomial tests (see Results) were conducted on the presence or absence of eggs in each 144 

artificial host.  For those cases where eggs were present, the number of eggs or clutches were 145 

analyzed with ANOVA (Type III) (on square root transformed values where needed to fit 146 

variance and normality assumptions).  Egg load data were also analyzed with an ANOVA.  147 

All egg data required square root transformation to fit variance and normality assumptions 148 

(tested with Levene’s and Shapiro-Wilk tests, respectively).  All statistical testss were 149 

conducted with SPSS 17.0 (SPSS, Inc.).  All continuous data is report with standard errors of 150 

the mean. 151 

 152 

Experiment 2: Does the effect of conspecifics depend on host quality? 153 

  To test for changes in choosinessThis experiment was designed to determine whether 154 

the effect of conspecifics depended on the quality of the host presented to females in response 155 

to the presence of conspecifics, we conducted a pair of no-choice tests .  Flies used in this 156 

experiment were collected from the town square of Patagonia, AZthe same Patagonia, AZ 157 

site.  The experiment was set up similarly to experiment 1, but with a crossed design in which 158 

both host size and social condition were manipulated.  Flies were housed alone or in groups of 159 

three.  Half of the cups in each social treatment received artificial hosts (25mm diameter) 160 

identical to those in experiment 1, and half received larger artificial hosts (37 mm diameter).  161 

This experiment was performed in three blocks across several weeks.  No block or 162 
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block*treatment effects were seen, so data were pooled across blocks.  Statistical analysis was 163 

conducted as described for experiment 1. 164 

 165 

Experiment 3: Is the effect of conspecifics restricted to the resource item on which 166 

conspecifics reside? 167 

This experiment was designed to determine whether the presence of conspecifics 168 

resulted in a general increase in the propensity to oviposit, or whether increased oviposition 169 

was specifically directed at fruit near conspecifics.  All females used in the experiment were 170 

collected from Canelo Hills Cienega Reserve (31°33’40”N 110°31’46”W).  Fly behavior was 171 

tested in 3.8 L plastic arenas.  On either side of the arena, we placed a 297 mL clear plastic 172 

beverage cup (Solo brand) which would hold test stimuli to which a focal female released into 173 

arena could respond. A vial of water, and a yeast/sugar strip was placed in the middle of the 174 

arena and in each cup.  A couplet of 25 mm artificial hosts attached with gardening wire was 175 

placed over the edge of each cup, such that one host was outside of cup and the other was 176 

inside the cup.   and tThe top of each cup was covered with square of cloth mesh to allow 177 

olfactory cues to escape into the arena (Figure 1a). 178 

During the first trial of this experiment, in half of the arenas neither cup received 179 

females (n=10), while in the other half of the arenas, 12 female flies were placed in one of the 180 

two cups (n=10).  In the second trial, conducted in two blocks, one of the two cups contained 181 

12 females in all arenas (n=40).  To control for position effects, in each block, an equal 182 

number of arenas were set up with fly-containing cups placed on either side of the arena.  183 

Focal flies that had eclosed 2-3 weeks prior to the experiment were held singly outside of the 184 

arenas in 473 mL cups for 48 hours prior to being introduced to arenas at 1100 on the first day 185 
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of each trial.   Arenas were scanned hourly from 1100-1800 for 2 days (number of scans per 186 

arena = 15).  During these scans we noted the side of the arena on which females were located 187 

and whether or not they were on one of the walnut models.  72 hours after focal females were 188 

placed in arena, walnut models were removed and the eggs laid in each model were counted.   189 

 190 

Experiment 4: Does previous experience with conspecifics increase oviposition response? 191 

  In this experiment, we used a crossed design to determine the roles of previous and 192 

current experience with conspecifics on the propensity of a female to oviposit.   Flies used in 193 

this experiment were collected from a variety of sites in southern Arizona.  We placed 194 

females within two days of eclosion into experimental cups.  Half of the females were placed 195 

alone in a cup, the other half were held 10 to a cup (single vs. group rearing treatment).   Flies 196 

were tested for their propensity to oviposit when they were 12 to 21 days old. 197 

A test began by suspending a ripe J. major fruit by wire from the ceiling of a 17.2cm x 198 

17.2cm x 17.2cm plexiglass-frame screen cage. Fruit were 26-38mm in diameter, and had 199 

been previously punctured once with a 00 insect pin. Females are attracted to these pin pricks 200 

and oviposit in them, as they typically do with naturally-formed oviposition punctures (Papaj, 201 

1994).   202 

In half of the tests, we next placed a ‘resident female’ gently on the test fruit; in the 203 

other half, the fruit was left unoccupied (resident vs. no resident treatment).  The resident was 204 

a female of the same or similar population origin as the focal female.  When placed on the 205 

fruit, the resident almost always began ovipositing into the artificial puncture. If the resident 206 
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attempted to oviposit in other areas of the fruit, she was gently nudged towards the artificial 207 

puncture with a probe. Residents that did not oviposit within 5 minutes were removed.  208 

A focal female from either the isolated or the grouped treatment was placed gently on 209 

a test fruit.  If a resident was present, we placed the focal female on the fruit out of sight from 210 

the resident.  We noted any oviposition attempts made by the focal female, as well as 211 

successful egg deposition.  An oviposition attempt is a conspicuous behavior in which a 212 

female turns the tip of her abdomen down towards the fruit surface, extending her needle-like 213 

ovipositor, and bores into the fruit with the ovipositor.  Oviposition, or egg deposition, begins 214 

when the ovipositor-boring female becomes virtually motionless.  If a resident was present on 215 

the fruit, we also noted the occurrence and form of any aggressive interactions by the focal 216 

female. Aggressive interactions included lunges, chases, head butting, and foreleg-kicking. 217 

An observation ended when either the focal female had initiated oviposition or the 218 

focal female had left the fruit for at least 5 minutes.  As soon as the observation ended, the 219 

focal female was frozen at -10oC and measurements of body size and egg load were made 220 

under stereoscopy. Oviposition behavior was analyzed with a logit loglinear model (SPSS 221 

17.0).  The improvement in model fit provided by each factor was assessed with chi-square 222 

tests. 223 

 224 

RESULTS 225 

Experiment 1: Do conspecifics affect oviposition decisions? 226 

Group housing increased the probability that flies oviposited in small artificial hosts.  227 

When held alone, 7 of 39 females laid eggs in the artificial host provided to them.  Given this 228 
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percentage of oviposition in isolation (= 18%), if there were no effect of social treatment, 229 

eggs should have been laid in only 45% of the cups holding 3 females (1-probability that none 230 

of 3 females in a cup lay eggs = (1-[1-0.18]3=0.45)).  In fact, eggs were laid in 81% (29 of 36) 231 

of the cups holding 3 females (exact bBinomial testprobability <, 0p <0.0001| expected = 232 

45%).   233 

Using the percentage of groups in which no female laid eggs (= 19%), the probability 234 

(f) that a given female laid eggs when in the presence of 2 other females is: f = P(1 grouped 235 

female lays eggs) = 1 − √P(3 females not laying eggs)3
= (1 − √0.19

3
) = 0.42. Thus, we 236 

estimate that the probability that a female lays any eggs in a small artificial host increases 237 

from 0.18 to 0.42 when she is housed with conspecifics.   238 

While social environment affected the probability of ovipositing, it did not affect the 239 

number or size of clutches laid per female.  We estimated an average 1.56 females oviposited 240 

in grouped treatments where eggs were found (see Appendix).  Given this estimate, each 241 

ovipositing female in grouped treatments (N=29 cups) laid an average of 15.69 (± 1.80 SE) 242 

eggs and an average of 4.1 (±0.50 SE) clutches.  Isolated females that laid eggs (N=7) laid an 243 

average of 11.00 (± 3.22) eggs and an average of 2.86 (±0.86 SE) clutches.  These differences 244 

between ovipositing isolated and grouped females were not statistically significant 245 

(tsqrt(eggs)=1.39, df=34, p=0.17; tsqrt(clutches)=1.20, df=34, p=0.24).  Furthermore, the size of 246 

individual clutches did not differ between treatments (Grouped: 5.85 ± 0.50 eggs per clutch; 247 

Isolated: 4.28 ± 0.79 eggs per clutch; teggs=1.42, df=34, p=0.16).   248 

Post-test dissections revealed that females housed in groups and females housed in 249 

isolation had similar egg loads at the end of the assay (Isolated: average # of mature oocytes= 250 

24.7±2.4 s.e.; Grouped: avg. # of mature oocytes per female: 24.6±1.3; ANOVA: 251 
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F1,69=<0.0001, p=0.89).  In order to estimate overall per capita egg production, we added the 252 

number of eggs laid and the number of eggs in female ovaries.  There was a trend for females 253 

housed in groups to have overall higher per capita egg production, (Single= 26.7±2.53; 254 

grouped = 31.1±1.89).  However, this difference was not statistically significant (ANOVA:  255 

F1,69=2.56, p=0.12). 256 

 257 

Experiment 2: Does the effect of conspecifics depend on host quality? 258 

The effect of social treatment was detected when small agar spheres were offered to 259 

females, but not when they were offered large agar spheres.  Controlling for social treatment, 260 

large spheres were more likely to contain eggs (85% contained eggs) than small spheres (52% 261 

contained eggs) (Mantel-Haenszel χ2 =26.2, df=1, p<0.0001).  As in experiment 1, only a 262 

small proportion of females held alone laid eggs in small spheres (11 of 45 = 0.24); the 263 

proportion of cups of grouped females in which eggs were laid into small fruit was greater 264 

than expected, based on oviposition by isolated females (expected proportion of spheres with 265 

eggs = 1-[1-0.24]3 =0.56; observed: 0.81 [33 of 41]; (exact binomial probability = 0.0009| 266 

expected = 56%)Binomial test: p=0.001).  As in experiment 1, females housed in groups with 267 

small spheres had an estimated probability of laying eggs of f = 1 − √0.19
3

 = 0.42.   268 

When females were held in isolation with large spheres, a majority of females laid 269 

eggs (32 of 44 = 0.73). Given this high rate of acceptance, almost all large agar spheres 270 

housed with 3 females would be expected to contain eggs (expected prob.= 1-[1-0.73]3 = 271 

0.98) regardless of any effect of conspecifics.  This expectation was met (observed: 98% (41 272 
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of 42); Binomial test p=0.8).  Females housed in groups with large spheres had an estimated 273 

probability f = 1-√0.02
3

  = 0.71 of laying eggs.   274 

We estimated that in cups of grouped females where eggs were laid, an average of 275 

1.56 and 2.19 females per cup laid eggs in small and large spheres, respectively.  The number 276 

of eggs laid per ovipositing female (square root transformed) was influenced by a marginally 277 

significant interaction between the size of the sphere and the social treatment (F(size)1,113=4.87, 278 

p=0.03, F(social)1,113=4.20, p=0.04, F(social*size)1,113=3.50, p=0.06).  Grouped females laid 279 

significantly more eggs in small spheres per ovipositing female than isolated females (t=2.07, 280 

df=42, p=0.04), while grouped and isolated females laid a similar number of eggs in large 281 

agar spheres (t=0.18, df=71, p=0.86; Figure 2a).  We found no significant effects of sphere 282 

size or social treatment on the number of clutches laid per ovipositing female (F(size)1,113=0.88, 283 

p=0.35 F(social)1,113=2.91, p=0.09, F(social*size)1,113=2.04, p=0.16; Figure 2b).  There was a trend 284 

for larger clutches to be found in large agar spheres,  Clutch size in the different social 285 

treatments did not differ significantly (F(size)1,113=2.17, p=0.14, F(social)1,113=0.02, p=0.89, 286 

F(social*size)1,118=0.08, p=0.78; Figure 2c).   287 

In summary, the effect of conspecifics on oviposition was not independent of sphere 288 

size; the effect was only detectable when flies were provided with small spheres.  This may 289 

indicate that the presence of conspecifics decreased choosiness, but we are faced with the 290 

possibility that the lack of an observed effect in the large sphere treatment was due to a ceiling 291 

effect.  However, if grouped females were more likely to lay eggs than isolated females in the 292 

large sphere treatment (i.e. f > 0.73), then our estimate of the number of females ovipositing 293 

per cup (2.19) would be an underestimate.  We would expect in turn that our estimate for the 294 

number of eggs per ovipositing female would be higher in groups than for isolated flies.  This 295 
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was not the case.  In fact, our measures of eggs and clutches laid in large spheres per 296 

ovipositing female were nearly exactly identical in isolated and grouped conditions (Figure 2a 297 

+ b). Therefore, it seems unlikely that the lack of an observed effect of social treatment on 298 

propensity to oviposit was due to a ceiling effect.   299 

 300 

Experiment 3: Is the effect of conspecifics restricted to the resource item on which 301 

conspecifics reside? 302 

The results of experiment 3 indicated the facilitating effect of conspecifics was not 303 

restricted to artificial hosts near those conspecifics.  The first trial of this experiment indicated 304 

that the presence of females in one cup influenced the oviposition behavior of focal females in 305 

the arena.  Only 2 of 10 females in arenas without conspecifics present laid any eggs.  In 306 

contrast, 6 of 10 females in arenas with conspecifics present laid eggs. The difference is 307 

marginally significant (Fisher’s exact test, p=0.08).  The presence of females in one of the 308 

cups resulted in an increase in the percentage of scans during which the focal female was seen 309 

on either sphere (with/ flies: 2.37 (± 0.74 SE) of scans; without/o flies: 0.97 (± 0.31 SE) 310 

scans; Mann-Whitney U test: U = 22, N1 = N2 = 10, P < 0.02).  Given that only 2 isolated 311 

females laid eggs, we cannot statistically compare the clutch number or size, however, there 312 

was a trend for females in arenas with conspecifics to lay more and larger clutches (mean # of 313 

clutchesisolated=3.5; mean # of clutcheswith /conspecifics=8.17; mean clutch sizeisolated=1.8, mean 314 

clutch sizewith /conspecifics=3.4).  Amongst the 10 pairs of cups that contained flies in one of the 315 

cups, no strong bias was observed towards or away from the cup containing the female cues.  316 

Data from these 10 pairs of cups were analyzed along with data from the two blocks of the 317 
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2nd trial of this experiment to increase our statistical power to detect any bias towards or 318 

away from cup containing conspecifics. 319 

Fifty females across 3 blocks were tested for a tendency to spend time and/or lay their 320 

eggs near conspecifics.  There was a significant trend for females to be seen more often on the 321 

sphere set away from conspecifics (t=2.309, df=49, p=0.025).  However, in general, focal 322 

females demonstrated no strong bias towards or away from conspecifics (Figure 1b).  Females 323 

did not spend more or less time on the side of the cage with containing conspecifics (t=0.122, 324 

df=49, p>0.91).  Similarly, there was no difference in the number of clutches laid in either 325 

sphere (t=.379, df=49, p=0.76), or in the size of clutches laid on either side (t=0.715, df=12, 326 

p=0.49; Figure 1b).  327 

 328 

Experiment 4: Does previous experience with conspecifics increase oviposition response? 329 

Rearing flies in groups increased their propensity to lay eggs and decreased their 330 

aggressive behaviors.  The probability that females attempted oviposition was higher for those 331 

reared with other females (χ2 =5.28, df=1, p<0.025).  Similarly, the presence of a resident 332 

female on the host during testing, increased the probability that a female attempted 333 

oviposition (χ2 =5.28, df=1, p<0.025) (Figure 3).   There were marginally significant trends in 334 

same direction when analyzing the proportion of females that successfully oviposited (rearing 335 

treatment: χ2 =3.52, df=1, p<0.06; resident presence: (χ2 =3.52, df=1, p<0.06) (Figure 3).  336 

There was no significant interaction between treatment factors on either attempted or 337 

successful ovipositions.  While nearly all of the successful ovipositions were in the puncture 338 

provided (20 of 21 ovipositions when no conspecific was present; 31 of 33 when conspecific 339 

was present), oviposition attempts were not more frequent on the side of the fruit containing 340 
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the puncture (pooled across treatments, proportion of attempts on puncture side = 0.51, tone-341 

sample=0.373, df=80, p=0.78).   342 

 When residents were present, the frequency of attacks by a focal female on a resident, 343 

measured in terms of lunges, head butts and foreleg kicks, depended on social history 344 

treatment, as well as whether or not females attempted oviposition (Figure 4).  In both rearing 345 

treatments, females that attempted oviposition engaged in more attacks than females that did 346 

not attempt oviposition (reared alone: Mann-Whitney U = 172.0,  Nattempt=22, Nno attempt=31, 347 

p=0.001; reared socially: Mann-Whitney U = 279.0,  Nattempt=32, Nno attempt=24, p=0.042).  348 

Among females that attempted oviposition, those reared alone engaged in a markedly greater 349 

number of attacks on the residents than females reared in groups (Mann-Whitney U = 240.0,  350 

Nsocial=32, Nisolated=24, p=0.038) (Figure 4).  351 

The effect of social history on egg-laying and aggression was not due to an effect of 352 

rearing conditions on egg maturation.  Among individuals used in the analysis (i.e., 353 

individuals with egg load > 0), females held alone carried 27.62 (+1.57 s.e.) mature oocytes 354 

on average (N=75), while females held in groups carried 25.19 (+1.49 s.e.) mature oocytes on 355 

average (N=83).  As in experiment 1, the difference in egg load is not statistically significant 356 

(t156=1.12, p=0.26).  Females in social history treatments also did not differ significantly 357 

either in age or in wing vein length, a proxy for body size (t-tests, p>0.26). 358 

 359 

DISCUSSION 360 

Our experiments demonstrate that the presence of conspecific females increases the 361 

probability that individual R. juglandis will lay eggs. Several species in the family Tephritidae 362 

show the same basic pattern, indicating that the social environment plays an important 363 
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facilitating role in the oviposition decisions of this group (Prokopy and Bush, 1973b; 364 

Robertson et al., 1995; Prokopy and Duan, 1998; Prokopy et al., 1999; Díaz-Fleischer and 365 

Aluja, 2003; Rull et al., 2003).  This is particularly interesting since larval density has a 366 

negative effect on both size and survivorship in tephritid flies (Nufio and Papaj, 2004b; 367 

Burrack et al., 2009), and many species, including R. juglandis, use host marking pheromones 368 

after oviposition that inhibit superparasitism by conspecifics (Nufio and Papaj, 2001). 369 

The context-dependent responses observed in experiments 2 and 4 are well suited as a 370 

response to high levels of scramble competition (host depletion or larval competition). In 371 

experiment 2, oviposition in large spheres (which represent superior resources (Nufio and 372 

Papaj, 2004a)) was not influenced by social treatment, while oviposition in small spheres was 373 

seen more often in group housed females.  This quality-dependent response to conspecifics 374 

indicates that flies in groups are less choosy than flies held alone, a predicted response to 375 

higher levels of scramble competition, but not to high levels of resource quality.    376 

The pattern of female aggressive encounters observed in experiment 4 also supports 377 

the hypothesis that females use the presence of conspecifics as an indicator of high competitor 378 

density.  Females were more aggressive towards another female on a fruit when they 379 

attempted oviposition. The association between oviposition and aggression suggests that 380 

aggression functions to monopolize resources for a female’s offspring (see also Papaj and 381 

Messing, 1998).  If prior experience with conspecifics indicates the presence of high quality 382 

hosts, females should engage in more aggressive encounters when they are reared with 383 

conspecifics.  Instead, females were much less aggressive when they were reared with 384 

conspecifics.  This pattern in aggression makes more sense if previous experience with 385 

conspecifics indicates high competitor density.  At high densities, fighting with the resident 386 

Commented [VU1]:  
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may have relatively little value because the fruit will likely be visited later and exploited often 387 

by other females (Nufio and Papaj, 2004b). In fact, fighting with the resident under these 388 

conductions may incur an opportunity cost related to finding and utilizing other fruit.  On the 389 

other hand, at low to intermediate competitor densities there is a relatively high payoff to a 390 

female that fights with a resident female, if such fighting expels the resident from the fruit 391 

before her clutch is completed (Dubois et al., 2003). 392 

The patterns of oviposition observed in experiments 3 and 4 do not support the 393 

hypothesis that females use the presence of females as indicators of the quality of particular 394 

fruit.  In experiment 3, when given a choice between hosts near or away from conspecifics, 395 

females did not oviposit more near conspecifics, and in fact alighted more often away from 396 

conspecifics (Figure 1b).  A similar pattern has been observed in Anastrepha ludens (Díaz-397 

Fleischer and Aluja, 2003).  Similarly, in experiment 4, the resident female could have 398 

provided inadvertent social information about the location of an area on the fruit that was 399 

especially appropriate for oviposition.  However, females did not appear to use such 400 

information as they did not obviously position their oviposition attempts near the resident 401 

females.  Finally.in experiment 4, previous encounters with conspecifics, which should have 402 

provided little information about the quality of the resource provided during the test, affected 403 

oviposition efforts (Figure 3).  404 

In summary, the pattern of social stimulation of oviposition (and concurrent inhibition 405 

of aggression) observed in R. juglandis seems best viewed as a response to increased 406 

competition in the local environment.  Thus, social stimulation of oviposition in tephritid flies 407 

may represent a case in which animals increase acceptance of a resource in the presence of 408 

conspecifics, even if conspecifics provide no information about the quality of that resource.   409 
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Theory predicts that the information value of a cue such as the presence of 410 

conspecifics depends on how reliably that cue is associated with the environmental factor of 411 

interest and how uncertain that factor is when the cue is unavailable (Stephens, 1989; McLinn 412 

and Stephens, 2006).  As such, it is unsurprising that walnut flies behave as though 413 

conspecifics provide them information about competition that is more valuable than 414 

information they provide about the quality of resources.  First, it is reasonable to assume that 415 

the presence of conspecifics is reliably correlated with level of competition present in the 416 

environment because conspecifics are the source of that competition.  Any correlation 417 

between conspecific presence and resource quality is probably weaker than the correlation 418 

between conspecific presence and the level of competition because it relies on the 419 

conspecifics ability to identify high quality larval resources.  Furthermore, it seems likely that 420 

in the absence of conspecific cues, individuals will not be able to estimate the level of 421 

competition they will encounter.  Conversely, individuals can use size and perhaps chemical 422 

cues to determine the quality of walnuts. 423 

 424 

IMPLICATIONS 425 

Recently, the idea that conspecifics provide ‘public information’ about resource 426 

quality has gained increasing attention (Danchin et al., 2004; Dall et al., 2005).  Discussion of 427 

the use of public information often implicitly assumes animals are choosing among several 428 

available resources (using a “best-of-n” search strategy), where the relative fitness gain of 429 

accepting one of the sampled resources is the major factor in adaptive choice.  When this is 430 

the case, if two resources are of equal intrinsic quality then individuals are expected to choose 431 

the resource where competition will be lower (typically, the resource without conspecifics).  432 
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Therefore, in those cases where animals choose resources that contain conspecifics, it is 433 

concluded that the conspecifics must be providing information about intrinsic resource 434 

quality.   435 

While there seems little doubt that animals use the presence and behavior of 436 

conspecifics as indicators of resource quality, when considering animals that sequentially 437 

search for resources it is important to consider that adaptive decision making is based not only 438 

on the quality of a given resource but also on the distribution of quality in the local 439 

environment.  Individuals using sequential search can use the presence of conspecifics on a 440 

resource not only as an indicator of quality and the level of competition forof that resource, 441 

but also of the quality and level of competition in the local environment.  Our results indicate 442 

that using conspecifics as indicators of local levels of competition can affect decision making 443 

in ways that are superficially similar to using conspecifics as sources of information about 444 

resource quality. 445 

 446 

Appendix: 447 

We estimated the number of females that were responsible for the eggs found in 448 

spheres in order to obtain a ‘per ovipositing female’ estimate of clutch number in cups 449 

containing 3 females. The mean number of females laying eggs in spheres where eggs were 450 

found (x) was estimated as:  451 

x = ∑ k
(3

k
)f kq3−k

1 − q3

3

k=1

 452 
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where f is the probability of ovipositing and q= (1-f).  In experiment 1, given each group-453 

housed female has a probability, f=0.42, of laying eggs, an estimated mean x= 1.56 females 454 

held in groups contributed to the total number of eggs laid by the group.  455 

 456 
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Figure 1. Design and results of experiment on spatial scale of conspecific effects.  (a) Set-up 537 

for all arenas in part 2 of experiment 3.  3.8 L box containing two 297 mL cups, one 538 

containing 12 female flies and each with two model walnuts, one inside the cup and one 539 

outside. Cups were topped with cloth mesh and furnished with vials of water.  (b) Number of 540 

observations/flies/eggs on either side of the cage.  Significant difference (two-tailed paired t-541 

test, α=0.05) indicated with asterisk. 542 

 Figure 2.  The effect of social environment and host size on oviposition behavior (experiment 543 

2).  Number of ovipositing females estimated as described in text.  (a) Mean (+ SEM) number 544 

of eggs per ovipositing female. Shared letters indicate non-significant differences (t-test, 545 

α=0.05; interaction marginally significant: F(social*size)1,113=3.50, p=0.06). (b) Mean (+SEM) 546 

number of clutches per ovipositing female (No significant differences), (c) Mean (+SEM) 547 

clutch size (no significant differences). 548 

Figure 3.  Effect of previous and current social environment on egg-laying decisions 549 

(experiment 4).  Bars represent proportion of flies in each rearing treatment that attempted to 550 

oviposit when presented with a fruit with or without a resident female.  Lines represent 551 

proportion of females that successfully oviposited.  Proportion attempting oviposition was 552 

affected by previous (χ2 =5.28, df=1, p<0.025) and concurrent exposure (χ2 =5.28, df=1, 553 

p<0.025) to conspecifics.  554 

Figure 4.  Mean (+SEM)  number of aggressive encounters (lunges, head butts and foreleg 555 

kicks) in flies differing in social rearing condition.  Shared letters indicate non-significant 556 

differences (Mann-whitney U test, α=0.05).  Numbers within bars are sample sizes.   557 
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