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Measuring the Accuracy of an Ancient Area Formula

(This work appeared in Mathematical Spectrum 46 (2014), no. 3, pp. 107-116.

The published version may be found at http://ms.appliedprobability.org/)

Abstract

In the ancient world, geometers were concerned primarily with mensuration (the
practice of accurate measurement), with the most obvious applications being in
construction and surveying. One well-known formula from this time (appearing
most famously in the Temple of Horus in Egypt, c. 237-57 BCE) purports to give
the area of a general quadrilateral by averaging the lengths of opposite pairs of sides
and then multiplying the averages. While this formula is erroneous, it produces
highly accurate results when the quadrilateral is nearly rectangular. We examine
the relative accuracy of this area formula, including: (1) different methods of finding
the exact area, (2) how to find the interior angle that minimizes the error of the
formula, and (3) how significantly the error varies as the interior angle varies from
the ideal. In the end, these observations lead to an improved version of the formula
that relies only on the side-lengths of a quadrilateral.

1 Introduction

Imagine yourself living in ancient Egypt, about 2,000 years ago. You are a surveyor,
and one of your tasks is to measure the size of the various farm fields in the area, so
that the local authorities can tax the farmers. All of the fields under your jurisdiction
are quadrilaterals; many are very nearly rectangular, but some of them have a skewed
shape. How do you complete this task? Also, assuming your measurements are accurate,
what data do you need to find the exact area of a field?

This scenario is an example of mensuration: the practice of accurate measurement.
Over time, builders and surveyors in the ancient world developed a collection of mathe-
matical formulas to expedite the calculation process. These formulas were not justified
by rigorous proof, but rather by experience. If a formula provided a measure of area
or volume that was indistinguishable from the true value, then it was considered correct.

First, let us consider some of the background on the problem. Since the sources here
are scarce, archaeologists and historians have based their conclusions on a handful of
well-known sources. One novel source of information is the Temple of Horus in Edfu,
Egypt, whose inscriptions were first published in the West by Lepsius [5, p. 75 ff.] in
1855.1 At the dedication of the temple, several tracts of land were dedicated to Horus
and donated to the temple; both the dimensions and area of each field are given in the
temple inscriptions. As recorded by Thomas Heath in his landmark text A History of
Greek Mathematics [2, p. 124],

1An impressive collection of information on the temple has been complied and made available online
by the Edfu Project: http://www.edfu-projekt.gwdg.de/
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From so much of these inscriptions as were published by Lepsius we gather
that 1

2(a+ c) · 12(b+d) was a formula for the area of a quadrilateral the sides
of which are in order a, b, c, d.

In other words: average the lengths of opposite pairs of sides and then multiply the
averages. (We call this formula the Surveyor’s Formula, in keeping with Gupta [1].)
This formula appears in many different cultures over the course of many centuries, so it
is not unique to the Egyptians (see Gupta [1] for a comprehensive listing of appearances
of the Surveyor’s Formula).

In a sense, the Surveyor’s Formula “forces” the quadrilateral to be a rectangle with
side-lengths of a+c2 and b+d

2 , and then calculates the area of the rectangle (see Figure 1).

Figure 1. The “forcing” of a quadrilateral into a rectangular shape.

However, it is easy to see that this formula is incorrect. For example, choose any
nonrectangular parallelogram and you will find the formula overestimates its area. This
observation is nothing new: as Heath noted, “It is remarkable enough that the use of
a formula so inaccurate should have lasted till 200 years after Euclid had lived and
taught in Egypt” [2, p. 124]. Furthermore, it is known that this formula will never
underestimate the true area of the quadrilateral (see Gupta [1, p. 55] or Pottage [6, p.
302] for a proof of this fact).

But let us return to your task as an ancient Egyptian surveyor. Your goal is to use
a formula that is both accurate (as far as you are able to tell) and effective (it is quick
and easy to use) for the farm fields under your jurisdiction. Our goal in this article
is to assess the relative accuracy of one such formula—the Surveyor’s Formula. After
reviewing the various formulae for calculating the exact area of a quadrilateral, we use
numerical methods to determine the relative error of Surveyor’s Formula. Then, we use
these methods to analyze some specific examples, two of which are themselves taken
from the Temple of Horus. Lastly, we generate some more comprehensive data that
point toward a more accurate formula.

2 Orienting the Quadrilateral

As a surveyor, your task is relatively simple: first choose a corner of the field, and then
walk around the perimeter while making note of the side-lengths. Geometrically, this is
equivalent to choosing a corner (one of A, B, C, or D) and an orientation (clockwise
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or counterclockwise). With this in mind, a generic quadrilateral ABCD will be labeled
counterclockwise so that AB (taken to be the base) has length a, BC has length b, CD
has length c, and DA has length d; this is implicit in Figure 1.

For you, this information is quite enough: once the side-lengths are known, you can
apply the averaging technique of the Surveyor’s Formula and report the result to your
supervisors. However, the side-lengths alone are not sufficient to produce a well-defined
figure: one may change the interior angles of a quadrilateral while leaving the side-
lengths fixed. Thus, any exact calculation of area requires at least one more piece of
information. Typically, there are two ways to do this: the first is to take the measure
of one interior angle, while the other is to take the average of a pair of opposite interior
angles.

While we will decline to use the angle-averaging method in the end, it will aid in our
analysis of the single-area formula, so let us first examine the formula that it produces.
To do this, first relabel the angles ∠B and ∠D as θ and ϕ, respectively.

Figure 2. A quadrilateral with all vertices and

sides labeled, along with two opposite angles.

Letting ψ = 1
2(θ + ϕ), the formula for the exact area is

Area =
√

(s− a)(s− b)(s− c)(s− d)− abcd cos2 ψ , (1)

where s = 1
2(a+ b+ c+ d) is the semiperimeter (see Gupta [1, p. 53]). It’s easy to see

that the area is maximized when ψ is a right angle, so that cosψ = 0. In this case, the
formula is identical to Brahmagupta’s formula (see Kichenassamy [3, p. 29] or Kusuba
[4, p. 52]) for the area of a cyclic quadrilateral.

While this formula is elegant, and its maximum value is easily calculated, it is not
the most practical way to calculate the area. From your perspective as a surveyor, it
would be simpler to take the measure of a single interior angle. However, even this
task is ambiguous: any one of the four interior angles could give rise to a valid formula.
To eliminate this ambiguity, we need to establish an orientation to be used for all
quadrilaterals we encounter.

Definition 1. For any quadrilateral, we label the vertices A, B, C, D in a counterclock-
wise fashion (also labeling the corresponding side-lengths as AB = a, BC = b, CD = c,
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DA = d) so that a+ b ≤ c+ d and a+ d ≤ b+ c. We will refer to this as the standard
orientation of a quadrilateral.

This orientation is easy to accomplish. The two inequalities can be written as c−a ≥
b − d and c − a ≥ d − b, so we may choose the pair of opposite sides with the greater
difference between them and label them as a and c with c ≥ a.

3 The Formula for Exact Area

The simplest way to calculate the exact area of a quadrilateral (using the standard
orientation with additional labeling as given in Figure 2) is to slice it along the diagonal
AC and then add the areas of the resultant triangles:

Area =
1

2
ab sin θ +

1

2
cd sinϕ. (2)

Of course, this depends on two interior angles instead of one. We eliminate ϕ with the
following result.

Theorem 1. Given a quadrilateral ABCD with the standard orientation, its exact area
may be obtained from the formula

A(θ) =
1

2
ab sin θ +

1

2
cd
√

1− (L+M cos θ)2, (3)

where L = c2+d2−a2−b2
2cd , M = ab

cd , and θ is the measure of the angle ∠B.

The standard orientation is necessary in order to assign unambiguous labels to the
four sides and the angle θ. The truth of the theorem follows readily from the law of
cosines, since the two triangles ABC and ACD share the common side AC. Thus, we
may use the relation between cos θ and cosϕ to express sinϕ in terms of cos θ. Next,
we want to know how accurate the Surveyor’s Formula will be in practice. Treating the
side-lengths as fixed, it is easy to find the minimum possible error: simply maximize the
function A(θ).

Theorem 2. The single-variable formula A(θ) is maximized when θ = θ0 = arccos( −L
M+1).

This result follows from the fact that the angle-averaging area formula (1) is max-
imized when ϕ + θ = π, which provides the relation cosϕ = − cos θ. Then, taking θ0
and ϕ0 to be the angles at which the area is maximized, the proof of the single-angle
formula (3) tells us that

− cos θ0 = cosϕ0 = L+M cos θ0, (4)

from which we obtain cos θ0 = −L
M+1 .
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4 Measures of Average

Since formula (3) treats area as a function of the single, continuous variable θ, integration
is the simplest way to calculate the average area over any interval [θ1, θ2]:

Average area over [θ1, θ2] =
1

θ2 − θ1

∫ θ2

θ1

A(θ) dθ. (5)

We also define the relative error as a function of θ:

R(θ) =
|E −A(θ)|
A(θ)

=

∣∣∣∣ E

A(θ)
− 1

∣∣∣∣ ,
where E denotes the estimated area given by the Surveyor’s Formula. (Since the Sur-
veyor’s Formula depends only on the side-lengths, it follows that E is constant with
regard to θ.) Lastly, the average relative error for an interval [θ1, θ2] is obtained by
integrating R(θ):

1

θ2 − θ1

∫ θ2

θ1

R(θ) dθ =
1

θ2 − θ1

∫ θ2

θ1

∣∣∣∣ E

A(θ)
− 1

∣∣∣∣ dθ. (6)

In order to apply these formulas, we need to find the minimum and maximum values
of θ for a given set of side-lengths. This is where the standard orientation will help us:
since b + c ≥ a + d, minimizing θ will produce a triangle with side-lengths a + d, b,

and c. Again using the law of cosines, we find that cos θ = (a+d)2+b2−c2
2(a+d)b in this case

(let θ1 denote this angle). Since c + d ≥ a + b, maximizing θ will produce a triangle
with sides a+ b, c, and d, and θ2 = π. With these bounds, we can now apply formulas
(5) and (6) to obtain the average area and average relative error over all possible θ values.

Figure 3. Finding the minimum (left) and maximum (right)

θ values for a quadrilateral ABCD (center).

Example 1: (a, b, c, d) = (4, 6, 7, 5). Let us return to your surveying task: you come
upon a field with side-lengths 4, 6, 7, and 5. After measuring these side-lengths, you
apply the Surveyor’s Formula to produce an area estimate of 1

2(4 + 7) · 12(6 + 5) = 30.25.
Unbeknownst to you, the average area for this set of side-lengths (taken over the full
range of possible θ values) is approximately 24.906 and the average relative error is
approximately 24.498%.2 However, you may not notice the error in the Surveyor’s

2For consistency, all calculations will be displayed at five significant figures.
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Formula if the value of θ for your particular field is not extremely large or small—see
Figure 4.

Figure 4. The quadrilateral (4, 6, 7, 5), and a graph comparing A(θ) and E.
Very large or small values of θ will produce highly erroneous estimates.

To apprehend this phenomenon more clearly, consider instead some more median
intervals for θ. The easiest way to do this is take the maximum-area angle θ0 and
then use intervals centered on this value. In this example, θ0 is approximately 100.75◦

(≈ 1.7583 radians) and the relative errors are:

Deviation Avg. Rel.
from θ0 Error

±2◦ 4.3875%

±4◦ 4.4327%

±6◦ 4.5082%

±8◦ 4.6140%

±10◦ 4.7506%

While it is possible that you may notice a 5% relative error in your calculation, it is
also possible that this error would pass unnoticed. One may also guess that the relative
proportions of the four sides have a bearing on the relative error. Indeed, this seems to
be the case, as the next example demonstrates.

Example 2: (15, 3.5, 16, 4). This is a more “evenly balanced” quadrilateral than the
previous one, in that opposite pairs of sides are more nearly equal. As a side note, this
quadrilateral matches the side-lengths of a field described on the Temple of Horus.3

Here, your calculation gives 1
2(15+16) · 12(3.5+4) = 58.125 for the area. The average

area (again taken over all possible θ values) is 45.060, while the average relative error is
39.131%.

3See [5], [2] for more detail on this fact.
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Figure 5. The quadrilateral (15, 3.5, 16, 4), and the graphs of A(θ) and E.

In this case θ0 ≈ 98.577◦ (about 1.7205 radians), and the relative errors are:

Deviation Avg. Rel.
from θ0 Error

±2◦ 0.93124%

±4◦ 0.98289%

±6◦ 1.0691%

±8◦ 1.1902%

±10◦ 1.3464%

The formula is more accurate (by a factor of four) than in the last example. It is far less
likely that you would notice anything amiss with the Surveyor’s Formula in this case.

5 Measures of Unevenness

Of course, there are several issues with this analysis. One is that you and your fellow
surveyors do not have access to a wide range of farm fields to analyze, and most of the
fields you encounter are roughly rectangular by design. Another is that the concept of
“unevenness” is a nebulous one, and many different definitions could be used. To resolve
this second issue, we choose to measure unevenness in the following way.

Definition 2. Given a quadrilateral ABCD with the standard orientation, define the
unevenness measure µ as the difference between θ0 (measured in radians) and π

2 :

µ =
∣∣∣θ0 − π

2

∣∣∣ .
Since 0 ≤ θ0 ≤ π, it follows that 0 ≤ µ ≤ π

2 .
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In this way, a quadrilateral with µ = 0 is one for which the “ideal” angle is a right
angle. Furthermore, since θ = θ0 implies that θ and ϕ are supplementary, a quadrilateral
with µ = 0 is one that can be decomposed into two right triangles by slicing along the
diagonal AC.

Next we add two quadrilaterals to the list: (22, 4, 23, 4)4 and (10, 4.5, 10.5, 4). Let us
now compare unevenness to average relative error for all four quadrilatrals:

Sides: (4, 6, 7, 5) (15, 3.5, 16, 4) (22, 4, 23, 4) (10, 4.5, 10.5, 4)

µ: 0.18754 0.14970 0.12533 0.034490

Deviation Average Relative Error

±2◦ 4.3875% 0.93124% 0.81042% 0.22511%

±4◦ 4.4327% 0.98289% 0.87018% 0.29071%

±6◦ 4.5082% 1.0691% 0.97002% 0.40034%

±8◦ 4.6140% 1.1902% 1.1103% 0.55448%

±10◦ 4.7506% 1.3464% 1.2916% 0.75377%

It is easy to see that a decrease in µ corresponds to a decrease in average relative error.

Next, we repeat this analysis for a larger set of quadrilaterals. Specifically, 100
quadrilaterals were generated randomly5 and the average relative errors were computed
for an interval deviating from θ0 by ±6◦. When these errors are plotted against µ, the
chart in Figure 6 is obtained.

Figure 6.

4This quadrilateral also appears on the Temple of Horus in Edfu.
5All sides were restricted an to integer length between 1 and 40, and the fourth side-length was chosen

with the restriction that it be smaller than the sum of the previous three.
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Here, the trend is much clearer. It is interesting to note the presence of three outliers
in the upper left of the chart; these are the quadrilaterals (1, 27, 27, 4), (2, 19, 20, 2), and
(1, 25, 23, 7). In each of these cases, the two longest sides are adjacent to each other, and
greatly exceed the lengths of the two smaller sides (i.e., these are kite-shaped quadrilat-
erals). The upper-center outlier is (5, 29, 38, 7).

Lastly, when µ = 0, finding the difference between the Surveyor’s Formula and the
actual area is a matter of halving the difference of pairs of opposite sides (called the
difference average to distinguish it from the common notion of an average).

Theorem 3. Let ABCD be a quadrilateral with the standard orientation. The estimated
area given by the Surveyor’s Formula exceeds the actual area by at least the product of
the difference averages of opposite pairs of sides, i.e.,

E −A(θ0) ≥
1

2
|a− c| · 1

2
|b− d|.

Proof. First, from formula (2) we know that slicing the quadrilateral along the diagonal
AC produces two triangles, from which it follows that Area = 1

2ab sin θ + 1
2cd sinϕ ≤

1
2ab+

1
2cd. Alternatively, if we slice the quadrilateral alongBD we have Area ≤ 1

2ad+ 1
2bc.

Next, note that it suffices to show that A(θ0) + 1
2 |a− c| ·

1
2 |b−d| ≤

1
2(a+ c) · 12(b+d).

Recalling that the standard orientation dictates that c ≥ a, we can see that

A(θ0) +
1

2
|a− c| · 1

2
|b− d| ≤ 1

2
ab+

1

2
cd+

1

4
(c− a)(b− d)

=
1

2
(a+ c) · 1

2
(b+ d),

provided b ≥ d. In the case d ≥ b, we merely use the other inequality from above:

A(θ0) +
1

2
|a− c| · 1

2
|b− d| ≤ 1

2
ad+

1

2
bc+

1

4
(c− a)(d− b)

=
1

2
(a+ c) · 1

2
(b+ d).

6 Conclusion

The Surveyor’s Formula, 1
2(a + c) · 12(b + d), was in widespread use in many cultures

around the world over the course of many centuries. It is conceivable that a few percep-
tive individuals recognized that the formula was incorrect in some cases, and that it was
only applicable when the quadrilateral in question was roughly rectangular. However, no
evidence of this has been found (or is likely to be found). Nevertheless, the current anal-
ysis has led to the conclusion that errors in calculation are indeed small enough to not
have been noticed, provided that the unevenness of the quadrilateral is sufficiently small.
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Furthermore, Theorem 3 suggests that an improvement can be made by subtracting
the product of the difference averages from the estimate given by the Surveyor’s Formula:

1

2
(a+ c) · 1

2
(b+ d)− 1

2
|a− c| · 1

2
|b− d|. (7)

Theorem 3 assures us that this will always be greater than or equal to the actual area.
Returning once again to your task as an ancient Egyptian surveyor, this new formula
would not unnecessarily complicate your work: after measuring the four sides, it would
only be necessary to subtract an additional term when doing the calculation. Further-
more, this formula can be reduced to 1

2(ab+cd) when b ≥ d, or to 1
2(ad+bc) when d ≥ b.6

This version of the formula only requires you to multiply the lengths of two adjacent
sides and average the resulting numbers. Since a ≤ c under the standard orientation,
the reduced version of formula (7) can be summarized as follows:

Improved Surveyor’s Formula: Given the two pairs of opposite sides, sepa-
rately multiply the smaller from each pair by the larger from the other pair.
Then take the average of these two products.

This formula still employs the averaging technique of the Surveyor’s Formula, but relies
instead on the average of two products (as opposed to the product of two averages).
Moreover, it does not rely on the particular orientation of the quadrilateral. The relative
error data for the same 100 quadrilaterals makes it clear that formula (7) really is an
improvement—see Figure 7.

Figure 7.

6Interestingly, each of these formulas appears in Gupta [1, p. 55], though with a different purpose in
mind.
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