Publication Date

7-16-2013

Document Type

Article

Abstract

We investigate isothermal diffusion and growth of micron-scale liquid domains within membranes of free-floating giant unilamellar vesicles with diameters between 80 and 250 Am. Domains appear after a rapid temperature quench, when the membrane is cooled through a miscibility phase transition such that coexisting liquid phases form. In membranes quenched far from a miscibility critical point, circular domains nucleate and then progress within seconds to late stage coarsening in which domains grow via two mechanisms 1), collision and coalescence of liquid domains, and 2), Ostwald ripening. Both mechanisms are expected to yield the same growth exponent, alpha = 1/3, where domain radius grows as time(alpha). We measure alpha = 0.28 +/- 0.05, in excellent agreement. In membranes close to a miscibility critical point, the two liquid phases in the membrane are bicontinuous. A quench near the critical composition results in rapid changes in morphology of elongated domains. In this case, we measure alpha = 0.50 +/- 0.16, consistent with theory and simulation.

Publication Title

Biophysical Journal

Volume

105

Issue

2

First Page

444

Last Page

454

DOI

10.1016/j.bpj.2013.06.013

Publisher Policy

pre-print, post-print, pub PDF

Open Access Status

OA Deposit

Find in your library

Share

COinS