Publication Date
2012
Document Type
Article
Abstract
We give a new generalization of the Riemann zeta function to the set of b-ball juggling sequences. We develop several properties of this zeta function, noting among other things that it is rational in b−s. We provide a meromorphic continuation of the juggling zeta function to the entire complex plane (except for a countable set of singularities) and completely enumerate its zeroes. For most values of b, we are able to show that the zeroes of the b-ball zeta function are located within a critical strip, which is closely analogous to that of the Riemann zeta function.
Publication Title
Journal of Combinatorics and Number Theory
Volume
4
Issue
1
First Page
53
Last Page
65
Publisher Policy
pre print, post print
Open Access Status
OA Deposit
Recommended Citation
Elsner, Carten; Klyve, Dominic; and Tou, Erik, "A Zeta Function for Juggling Sequences" (2012). SIAS Faculty Publications. 850.
https://digitalcommons.tacoma.uw.edu/ias_pub/850