A Plasmodium α/β-Hydrolase Modulates the Development of Invasive Stages

Publication Date

12-1-2015

Document Type

Article

Abstract

The bud emergence (BEM)46 proteins are evolutionarily conserved members of the α/β-hydrolase superfamily, which includes enzymes with diverse functions and a wide range of substrates. Here, we identified a Plasmodium BEM46-like protein (PBLP) and characterized it throughout the life cycle of the rodent malaria parasite Plasmodium yoelii. The Plasmodium BEM46-like protein is shown to be closely associated with the parasite plasma membrane of asexual erythrocytic stage schizonts and exo-erythrocytic schizonts; however, PBLP localizes to unique intracellular structures in sporozoites. Generation and analysis of P. yoelii knockout (Δpblp) parasite lines showed that PBLP has an important role in erythrocytic stage merozoite development with Δpblp parasites forming fewer merozoites during schizogony, which results in decreased parasitemia when compared with wild-type (WT) parasites. Δpblp parasites showed no defects in gametogenesis or transmission to mosquitoes; however, because they formed fewer oocysts there was a reduction in the number of developed sporozoites in infected mosquitoes when compared with WT. Although Δpblp sporozoites showed no apparent defect in mosquito salivary gland infection, they showed decreased infectivity in hepatocytes in vitro. Similarly, mice infected with Δpblp sporozoites exhibited a delay in the onset of blood-stage patency, which is likely caused by reduced sporozoite infectivity and a discernible delay in exo-erythrocytic merozoite formation. These data are consistent with the model that PBLP has an important role in parasite invasive-stage morphogenesis throughout the parasite life cycle.

Publication Title

Cellular Microbiology

Volume

17

Issue

12

First Page

1848

Last Page

1867

DOI

10.1111/cmi.12477

Publisher Policy

pre print, post print (12 month embargo)

This document is currently not available here.

Find in your library

Share

COinS