The 2015 Landslide and Tsunami in Taan Fiord, Alaska

Publication Date

9-6-2018

Document Type

Report

Abstract

All authors: Bretwood Higman, Dan H. Shugar, Colin P. Stark, Göran Ekström, Michele N. Koppes, Patrick Lynett, Anja Dufresne, Peter J. Haeussler, Marten Geertsema, Sean Gulick, Andrew Mattox, Jeremy G. Venditti, Maureen A. L. Walton, Naoma McCall, Erin Mckittrick, Breanyn MacInnes, Eric L. Bilderback, Hui Tang, Michael J. Willis, Bruce Richmond, Robert S. Reece, Chris Larsen, Bjorn Olson, James Capra, Aykut Ayca, Colin Bloom, Haley Williams, Doug Bonno, Robert Weiss, Adam Keen, Vassilios Skanavis & Michael Loso Glacial retreat in recent decades has exposed unstable slopes and allowed deep water to extend beneath some of those slopes. Slope failure at the terminus of Tyndall Glacier on 17 October 2015 sent 180 million tons of rock into Taan Fiord, Alaska. The resulting tsunami reached elevations as high as 193 m, one of the highest tsunami runups ever documented worldwide. Precursory deformation began decades before failure, and the event left a distinct sedimentary record, showing that geologic evidence can help understand past occurrences of similar events, and might provide forewarning. The event was detected within hours through automated seismological techniques, which also estimated the mass and direction of the slide - all of which were later confirmed by remote sensing. Our field observations provide a benchmark for modeling landslide and tsunami hazards. Inverse and forward modeling can provide the framework of a detailed understanding of the geologic and hazards implications of similar events. Our results call attention to an indirect effect of climate change that is increasing the frequency and magnitude of natural hazards near glaciated mountains.

First Page

12993

Publisher Policy

open access

Open Access Status

OA Journal

Share

COinS