Title
Characterizing the Impact of Topology on IoT Stream Processing
Publication Date
2-6-2018
Document Type
Conference Proceeding
Abstract
The Internet of Things (IoT) extends traditional cyber-physical systems by linking sensor based edge devices to network accessible services and resources. In most current IoT deployments, sensor data is streamed from edge devices to servers for storage. Analytical pipelines are then used to translate this raw sensor data into actionable information in real-time. As additional IoT devices are deployed, the volume and rate of data received on the server side can increase dramatically. This has a possibility of offsetting the response latencies beyond acceptable limits for IoT analytical systems. In this paper, we compare the impact of alternative server-side stream processing topologies for ingesting and analyzing IoT sensor data in real-time. We use real building sensor data with our real-time IoT platform called Namatad. We have characterized and analyzed the latency and QoS impact due to the different levels of granularity of the ingestion and routing process by which we transmit data into the analytical pipelines. Our results show that as IoT systems continue to scale in density, server-side topology management for IoT data streams is critical for latency-sensitive control and analysis applications.
Recommended Citation
Dey, Anindya; Stuart, Kim; and Tolentino, Matthew, "Characterizing the Impact of Topology on IoT Stream Processing" (2018). School of Engineering and Technology Publications. 186.
https://digitalcommons.tacoma.uw.edu/tech_pub/186