Title
Unconditionally Secure, Universally Composable Privacy Preserving Linear Algebra
Publication Date
1-1-2016
Document Type
Article
Abstract
Linear algebra operations on private distributed data are frequently required in several practical scenarios (e.g., statistical analysis and privacy preserving databases). We present universally composable two-party protocols to compute inner products, determinants, eigenvalues, and eigenvectors. These protocols are built for a two-party scenario where the inputs are provided by mutually distrustful parties. After execution, the protocols yield the results of the intended operation while preserving the privacy of their inputs. Universal composability is obtained in the trusted initializer model, ensuring information theoretical security under arbitrary protocol composition in complex environments. Furthermore, our protocols are computationally efficient since they only require field multiplication and addition operations.
Publication Title
IEEE Transactions on Information Forensics and Security
Volume
11
Issue
1
First Page
59
Last Page
73
DOI
10.1109/TIFS.2015.2476783
Publisher Policy
pre-print, post-print
Recommended Citation
David, B.; Dowsley, R.; Graaf, J. van; Marques, D.; Nascimento, A. C.; and Pinto, A. C., "Unconditionally Secure, Universally Composable Privacy Preserving Linear Algebra" (2016). School of Engineering and Technology Publications. 39.
https://digitalcommons.tacoma.uw.edu/tech_pub/39